
Univerzita Komenského v Bratislave

Fakulta matematiky, fyziky a informatiky

Zlepšenie kvality obrazov z
bezpečnosných kamier

Bakalárska práca

2023
Ondrej Bublavý





Univerzita Komenského v Bratislave

Fakulta matematiky, fyziky a informatiky

Zlepšenie kvality obrazov z
bezpečnosných kamier

Bakalárska práca

Študijný program: Aplikovaná informatika
Študijný odbor: Informatika
Školiace pracovisko: Katedra informatiky
Školiteľ: RNDr. Zuzana Černeková, PhD

Bratislava, 2023
Ondrej Bublavý





Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta:
Študijný program:

Študijný odbor:
Typ záverečnej práce:
Jazyk záverečnej práce:
Sekundárny jazyk:

Názov:

Anotácia:

Vedúci:
Katedra:
Vedúci katedry:

Dátum zadania:

Dátum schválenia:
garant študijného programu

študent vedúci práce



Poďakovanie: Tu môžete poďakovať školiteľovi, prípadne ďalším osobám, ktoré
vám s prácou nejako pomohli, poradili, poskytli dáta a podobne.

iii



Abstrakt

Problematika kvality obrazov z bezpečnostných kamier má množstvo špecifík, ktoré ju
vynímajú z klasickej témy spracovania digitálneho obrazu a videa. Podlieha charak-
teristickej množine scenárov - zaberá predmetnú scénu vždy zo vzdialenosti rádovo v
metroch až desiatkach metrov, musí čeliť svetelným a často aj poveternostným pod-
mienkam nepretržite s plynutím každej hodiny, dňa a mesiaca, a predovšetkým neslúži
k poskytnutiu esteticky pútavého, čo najviac realistického či kinematického vizuálu
svojej scény, ale k identifikácii osôb, vozidiel a aktivít na nej situovaných. Táto prob-
lematika teda čelí špecifickej sade výziev, a teda si vyžaduje osobitné prístupy a našli
v nej uplatnenie inde nevyužívané algoritmy. Zároveň aj tu priniesli osoh mnohé z me-
tód, zamýšľaných k všeobecnému zvyšovaniu kvality niektorých z atribútov videa. V
tejto práci sme preskúmali paletu relevantných prístupov a algoritmov, implementovali
tie, ktoré majú zverejnené verzie a kódy nasaditeľné do praxe, a to v rámci jedného
programu, ktorý umožňuje tieto metódy kombinovať - aj s nastavením ich parametrov
- a otestovali postupnosti ich aplikácií poťažmo k bežným scenárom v akých bývajú
bezpečnostné kamery nasadené, a testovacím videám v týchto scenároch zhotoveným.
Našli sme súvislosti určujúce vhodnosť použitia jednotlivých algoritmov a ich kombiná-
cií na základe prostredia a inherentných vlastností videa z daného typu bezpečnostnej
kamery. Dosiahli sme viditeľné zlepšenie v čitateľnosti čŕt a podstatných detailov ob-
jektov záujmu a demonštrovali sme tieto výsledky porovnaniami, z ktorých ukážky sú
zahrnuté v práci. Okrem obrazových vlastností sme posudzovali aj časovú náročnosť
metód, a teda ich vhodnosť použitia na zlepšenie priameho prenosu, alebo ich apliko-
vateľnosť len na už nahraný záznam.

Kľúčové slová: bezpečnostné kamery, dohľadové systémy, kvalita videa, zvyšovanie
rozlíšenia, zvyšovanie kontrastu, idenitifkácia osôb
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Abstract

The issue of the quality of images from security cameras has a number of specifics that
distinguish it from the classical topic of digital image and video processing. It is subject
to a characteristic set of scenarios - it monitors the surveilled scene from a distance on
the order of meters to tens of meters, it has to face light and often weather conditions
continuously with the passage of each hour, day and month, and above all, it’s goal is
not to provide an aesthetically appealing, most realistic, or cinematic visual of its scene,
but to identify the people, vehicles and activities situated on it. This area thus faces
a specific set of challenges, and therefore requires specific approaches, and algorithms
not used elsewhere have found application here. At the same time, many of general
methods intended to enhance the quality of some of the common video attributes have
also been beneficial here. In this work, we have explored a variety of relevant approaches
and algorithms, implemented those released and deployable for practical usage, within a
singular program that allows these methods to be combined - including setting up their
parameters - and we tested the sequences and orders of their application in common
scenarios, in which security cameras tend to be deployed, and on test videos taken
in these scenarios. We found characteristics determining the eligibility of using these
algorithms and their combinations based on the environment and inherent attributes
of the video from the given type of security camera. We have achieved a noticeable
improvement in the recognizability of features and essential details of the objects of
interest, and have demonstrated these results with comparisons, examples of which are
included in the paper. In addition to the visual properties, we have also assessed time
demanded by the methods, and hence their suitability for deployment with footage
streamed in real time, or their applicability only to already captured recording.

Keywords: security cameras, surveillance systems, video enhancement, super-resolution,
contrast enhancement, person identification
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Úvod

Boj s kriminalitou a bezpečnosť verejných, pracovných či súkromných priestorov je
od nepamäti implicitnou témou náležiacou ľudskej civilizácii. Dalo by sa polemizovať,
že bezpečnostné kamery v nej priniesli najväčší prielom od čias kodifikácie prvých
zákonov, keďže umožnili nesporné dokazovanie ich porušenia alebo neporušenia, 24
hodín denne, 7 dní v týždni. Kvalita obrazu z bezpečnostných kamier je pritom dôležitá
z perspektívy prítomnosti, minulosti, ako aj budúcnosti. Dostatočne detailný záznam v
reálnom čase pracovníkovi poverenému dohľadom nad priestorom dovoľuje identifikovať
pohyb osôb, vozidiel, iných objektov, a výkon aktivít v ňom, bez nutnosti jeho fyzickej
prítomnosti, a teda aj na viacerých miestach či z viacerych uhlov pohľadu súčasne.
Rovnako môže slúžiť automatizovanému klasifikačnému, prípadne poplašnému systému,
využívajúcemu kamerové systémy pre sledovanie tohto priestoru. Z pohľadu minulosti
umožňuje spoľahlivé vyšetrenie nehodových udalostí či bezpečnostných incidentov. A
do budúcnosti im tak umožňuje predchádzať – či už aktívne – napravením predošlých
chýb v ochrane priestoru, alebo pasívne – odradením páchateľov.

Doposiaľ k dátumu zadania tejto práce nebol navrhnutý algoritmus, ani defino-
vaná metodológia, vedúca k všeobecnému zlepšeniu kvality výstupných obrazov z bez-
pečnostných kamier. Prezentované algoritmy relevantné v tejto problematike sa buď
zapodievali len jednou z možných oblastí, ktorými určujeme kvalitu videa a identifi-
kovateľnosť objektov a aktivít na ňom zachytených, nehľadiac na kombinovateľnosť
s prístupmi cieliacimi na iné zlepšiteľné atribúty, alebo sa ani nezaoberali konkrétne
doménou bezpečnostných kamier a jej špecifikami, ale digitálnym videom ako takým.
My sa pokúsime zlepšenie kvality záznamov z dohľadových systémov poňať ako samo-
nosnú úlohu s jednotným cieľom, ktorý posudzujeme zlepšením schopnosti ľudského
alebo programového pozorovateľa identifikovať objekty a kontext v možných scenároch
v rámci nasadenia bezpečnostných kamier.

V kapitole 1 identifikujeme výzvy, problémy a atribúty, v ktorých zlepšenie pris-
pieva k zlepšeniu celkovej kvality záznamu. Taktiež sa v nej pozrieme na už existujúce
prístupy a metódy a na ich relevanciu pre našu oblasť. V kapitole 2 uvedieme, aké
algoritmy implementujeme pre účely tejto práce, a akým spôsobom a na akých vide-
ách ich testovať. Porovnávať pritom nebudeme - narozdiel od mnohých prác na tému
spracovania obrazu - iba samostatné algoritmy, ale najmä rôzne kombinácie týchto al-
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2 Úvod

goritmov, vrátane poradí ich nasadení, v zmysle vytýčeného cieľa dosiahnuť zlepšenie
presahujúce viacero kvalitatívnych kritérií. Výsledky týchto porovnaní na testovacích
videách spadajúcich do širšej palety realistických a bežných scenárov budeme prezen-
tovať v kapitole 3, kde zhodnotíme aj ich nameranú časovú náročnosť, a teda možnosť
nasadenia na živý prenos v reálnom čase a nie len na už zhotovený záznam.



Kapitola 1

Výzvy a existujúce prístupy

Aby bol záznam z bezpečnostnej kamery čo najnápomocnejší pri predchádzaní, odhaľo-
vaní a vyšetrovaní škodnej či priamo kriminálnej činnosti, musí byť pri jeho vyhotovo-
vaní, prípadnom ukladaní a zobrazovaní, kladený dôraz na určité atribúty jeho kvality,
či už má záznam slúžiť ľudskému pozorovateľovi, alebo nejakému rozpoznávaciemu
algoritmu. Aktuálne neexistuje žiadna norma ani štandard definujúci tieto atribúty,
avšak v rozsahu našej práce si ich definujeme, aby sme si vedeli orientačne stanoviť
metriky, zlepšenie v ktorých ústi zároveň k zlepšeniu v praktickom nasadení. Pozrime
sa teda na aspekty, ktoré budeme sledovať.

1.1 Atribúty kvality záznamu

Kontext kvality obrazu systémov bezpečnostných kamier je podmnožinou oblasti kva-
lity videozáznamu, ktorý je podmnožinou oblasti kvality digitálneho obrazu. Preto
niektoré atribúty, ktorými sa budeme zaoberať, sú zároveň predmetom záujmu zmiene-
ných nadmnožín, a niektoré naberajú osobitý dôraz v odvetví bezpečnostných kamier.

1.1.1 Všeobecne relevantné atribúty kvality videa

• Jednou zo základných metrík kvality digitálneho obrazu je rozlíšenie. V dneš-
nej dobe už sú dostupné senzory vysokých rozlíšení za relatívne nízke ceny, za
čo vďačíme aj takzvanej honbe za megapixelmi. Samotné rozlíšenie je pri bez-
pečnostných kamerách výzvou v dvoch hlavných prípadoch. Jeden z prípadov,
kedy potrebujeme vyššie rozlíšenie, než je priemyselným štandardom (najčastej-
šie 720p a 1080p), je, keď je kamera umiestnená tak, aby pozorovala rozsiahly
priestor (napríklad veľké parkovisko), a teda veľkosť detailov, ako ľudské tváre či
evidenčné čísla vozidiel, je v pomere k celému záberu nepostačujúca. Algoritmy
spoľahlivo dopočítavajúce pixely obrazu, škálujúc ho na vyššie rozlíšenie tak, aby
došlo k zlepšeniu rozoznateľnosti detailu a nie len k pocitu, že obraz ako celok
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je kvalitnejší, no neobsahuje viac informácii, sú stále v podstate v plienkach.
Vzostup umelej inteligencie a nárast miery jej chápania kontextu vizuálnej infor-
mácie to však rýchlo mení. Jedným z prípadov, kedy si zas vysoké rozlíšenie pri
zázname nemôžeme dovoliť je, keď je záznam z bezpečnostnej kamery ukladaný
na pamäťové médium. To má totiž obvykle obmedzenú kapacitu a zvýšenie roz-
líšenia ukladaného obrazu bude mať za následok zníženie dĺžky záznamu, ktorú
dokážeme na pamäťovom médiu uchovať. Zaujímavým prístupom v tejto oblasti
je udalosťami riadená adaptácia, kedy sa systém snaží rozlišovať časové úseky s
nízkou či neexistujúcou aktivitou (zmenou na zábere), ktoré nie je nutné ukladať
vo vysokej kvalite, a časové úseky, kedy potenciálne dochádza k udalosti – zmene
pozorovaného stavu – ktorú môžeme mať záujem zachovať v zázname vysokej
kvality, pre prípad budúceho prešetrenia [6].

• Okrem rozlíšenia hrá v rovnici kvality záznamu a dostupného úložiska rolu aj ďal-
šia premenná – počet snímok za sekundu. Aj na tento parameter vieme aplikovať
udalosťami riadenú adaptáciu. Okrem toho sú na vzostupe algoritmy dopočíta-
vajúce snímky medzi dvojicami skutočne zaznamenaných záberov, tu však opäť
platí, že je veľmi obtiažne a v praxi obvykle nemožné dopočítať informáciu tam,
kde nám na originálnom zázname chýba. Tieto algoritmy len zvyšujú vnímanú
plynulosť záznamu, no nedokážu pomôcť odhaliť skutočnosti, ktoré sa na pôvod-
nom zázname neobjavili.

• Bitová hĺbka nám hovorí o rozsahu farieb a ich jasov, ktorými dokážeme repre-
zentovať obraz v digitálnej podobe. Väčší význam v aplikácii bezpečnostných ka-
mier však má dynamický rozsah. Ten nám hovorí o schopnosti samotnej kamery
a jej spracúvajúceho softvéru zachytiť čo najširšie spektrum jasností. Dynamický
rozsah v reálnych prostrediach presahuje rozsah reprezentovaný v 8-bitových tex-
túrnych mapách [7][8]. Je veľmi dôležitý pri práci s prirodzeným osvetlením, kedy
jasnosť prostredia dosahuje od rádovo niekoľkých nitov po rádovo desaťtisíce ni-
tov [9].

• Pomer signálu a šumu je významný pre subjektívne vnímanú kvalitu obrazu.
Značne zašumený obraz komplikuje ľudskému pozorovateľovi, a o to viac prí-
padne nasadeným rozpoznávacím algoritmom, schopnosť identifikovať objekty,
ich hranice a črty, no aj ich pohyb. Metódy na odstraňovanie šumu pomáhajú
zvýrazneniu skutočnej informácie, nedotvárajú však stratenú informáciu.

• Ostrosť je veľmi dôležitá metrika v kontexte bezpečnostných kamier, keďže určuje
výraznosť (kontrast) hrán v obraze, a teda aj separovateľnosť a identifikovateľnosť
čŕt a objektov.
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Obr. 1.1: Porovnanie záberu zachytávajúceho scénu vo vysokom (naľavo) a v nízkom
(napravo) dynamickom rozsahu [1]

1.1.2 Atribúty kvality osobité bezpečnostným kamerám

• Zorný uhol v praxi hovorí o tom, aký rozsiahly a prípadne zakrivený priestor do-
kážeme pokryť jednou kamerou. Táto metrika je však určená dostupným hardvé-
rom, od softvéru závisí až následné spracovanie zakrivenia, prípadne rozmazania
a skreslenia na krajoch obrazu.

• Vlastnosti pri nízkej hladine osvetlenia naberajú obzvlášť veľký význam pri bez-
pečnostných kamerách, nakoľko značná časť záznamu bude pri väčšine aplikácii
vyhotovovaná za tmy. Ako veľmi záleží na schopnostiach kamery a obraz spracú-
vajúceho softvéru pri nízkom osvetlení závisí od prostredia, v ktorom je kamera
použitá. Kamery, ktoré sú umiestnené v konštantne osvetlených priestoroch, naj-
častejšie interiéroch, alebo priestoroch kde je osvetlenie automaticky aktivované
senzorom pohybu, môžu zanedbať aspekt použiteľnosti pri najnižších hladinách
ambientného jasu. Dôraz na schopnosti v tme nemusia klásť ani kamery inšta-
lované za účelom sledovania priestoru v čase, kedy sa v ňom očakáva zvýšená
aktivita ľudí, ak je to len za denného svetla. Väčšina aplikácii je však spätá s
nepretržitým záznamom a ak nie je kamerovému systému nápomocné automa-
tické osvetľovanie priestoru v prípade aktivity detekovanej iným senzorom, sú
schopnosti sprostredkovať črtovo a informačne čitateľný obraz za tmy minimálne
rovnako dôležité, a často dôležitejšie, než vlastnosti obrazu cez deň – čo nie vždy
platí pri posudzovaní kvality kamerového záznamu pre všeobecnejšie aplikácie.

Z tohto prehľadu nám vyplýva, že väčšina atribútov kvality je zhodná s všeobecnej-
šími aplikáciami kamerových záznamov, a teda mnohé algoritmy pôvodne nezamerané
špecificky na bezpečnostné kamery, budú mať značný prínos aj v tejto podoblasti.
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1.2 Existujúce prístupy a riešenia

Zhrnuli sme si hlavné oblasti, v ktorých vieme dosahovať zlepšenie pre celkovú kvalitu
videozáznamu z bezpečnostných kamier. Predstavme si teraz myšlienky niektorých z
najosožnejších prístupov venujúcich sa týmto oblastiam.

1.2.1 Zvýšenie rozlíšenia na základe databázy blokov vysokej

kvality

Ako bolo zmienené v prvej časti kapitoly, môžeme mať k dispozícii kameru s vysokým
rozlíšením, avšak nemať kapacitu ukladať snímky vo vysokom rozlíšení po dostatočne
dlhú dobu. Predstavme si, že by sme chceli vyhotovovať 8K záznam s frekvenciou 30
snímok za sekundu a uchovávať ho po dobu 48 hodín, napríklad pre prípad vyšetro-
vania kriminálnej činnosti. Museli by sme ukladať 30 fps × 3600 sekúnd × 48 hodín
= 4147200 snímok, pričom každá by bola o rozmere 7680 × 4320 pixelov, a na repre-
zentáciu každého pixelu by sme použili 24 bitov (8 bitov pre každý farebný kanál).
Potrebovali by sme tak minimálne (4147200 × 7680 × 4320 × 24) / 8 bitov ≈ 28840
GB, teda skoro 30 TB. Toto číslo vieme niekoľkonásobne znížiť kompresiou videa, no
stále budeme záznamom okupovať pamäť rádovo minimálne v pár terabajtoch. A čo ak
by sme chceli záznam uchovávať nie dva dni, ale dva týždne1? Ako vieme výrazne ušet-
riť požiadavky na pamäť bez toho, aby sme sa vzdali množstva podstatných informácii
vo videu? Jedným z možných riešení je uložiť všetky, alebo väčšinu snímok v zníže-
nom rozlíšení. Na rekonštrukciu detailov v snímkach nižšieho rozlíšenia sa najčastejšie
využíva databáza, v ktorej sa hľadá blok pixelov vo vysokom rozlíšení najpodobnejší
danému zaostrovanému bloku po interpolácii. Na základe skladby databázy blokov vo
vysokom rozlíšení, sú najčastejšie nasledujúce dva prístupy:

1.2.1.1 Ukladanie kľúčových snímok

Môžeme v originálnom rozlíšení ukladať každý k-ty (alebo iným vzorcom pravidelne
zvolený) záber alebo statické snímky [10] a následne využiť tieto kľúčové zábery v
pôvodnej kvalite k dopočítaniu nezachovaných detailov na ostatných snímkach. Tento
koncept ilustruje obrázok 1.2 z článku [2]. Majme pri tom na vedomí, že všetky zábery,
vrátane tých kľúčových, sa ukladajú komprimované. Avšak zábery, ktoré nie sú kľúčo-
vými, sa navyše ukladajú v zníženom rozlíšení. Pri popisovanom prístupe, je databáza
tvorená blokmi kľúčových snímok. V článku [2] sa ako prístup pri následnom dopočíta-
vaní využíva parameter energie, ktorú daný blok nesie, predstavujúcej hustotu detailu,

1Kým do roku 2018 bolo na Slovensku legálne uchovávať kamerové záznamy z bezpečnostných
kamier po dobu maximálne 15 dní, v súčastnosti už je to len 72 hodín.
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Obr. 1.2: Myšlienka ukladania každého k-teho záberu v pôvodnom rozlíšení z článku
[2]

a bloky, ktoré prekročia určenú hranicu, sú nahradené prislúchajúcimi interpólovanými
blokmi z databázy blokov kľúčových snímok, ktorá je o ne následne aktualizovaná.

1.2.1.2 Využitie rozsiahlej existujúcej databázy

Inou možnosťou je využívať rozsiahlu databázu "trénovacích"záberov, podobne ako pri
trénovaní umelej inteligencie, a ku každému interpólovanému bloku v nižšom rozlíšení
hľadať najpodobnejší blok vo vysokom rozlíšení v celej databáze, alebo jej časti urče-
nej predošlou skúsenosťou, pre urýchlenie procesu. Výhoda tohto prístupu je, že bez
ukladania akýchkoľvek snímok v pôvodnom rozlíšení umožňuje ešte značnejšie zníženie
celkovej pamäte potrebnej pre uloženie rovnako dlhého záznamu. Naopak nevýhodou
je, že napriek rýchlemu rozvoju v tejto oblasti, stále nemusí byť jednoduché dostať sa
v rámci prijateľných nákladov k databáze dostatočnej robustnosti. Tento prístup je
tiež náročnejší na následné prehľadávanie tejto databázy [11], čo plynie z veľmi veľ-
kého množstva blokov vo vysokej kvalite, ktoré musí obsahovať, aby dokázala vyhovieť
všetkým, alebo veľkej väčšine scenárov. Taktiež tento prístup nie je veľmi účinný pri
identifikácii osôb, keďže je nepravdepodobné, že by sme človeka s danou tvárou našli v
databáze.

1.2.2 Zvýšenie rozlíšenia prevzorkovaním

Každý záber videa zvyčajne obsahuje silno a slabo štruktúrované regióny. Silno štruk-
túrované regióny sa skladajú z takmer homogénnych oblastí obrazu, ako jednofarebné
steny, obloha, či akýkoľvek iný celistvý zhluk pixelov, ktorý ľudské oko považuje za
jeden ucelený objekt s jedným farebným odtieňom. Medzi týmito objektami sú v silno
štruktúrovaných regiónoch veľmi jasne definované hranice (napríklad rám okna, na
rozdiel od napríklad vĺn na vodnej hladine). Slabo štruktúrované regióny nie sú na
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záberoch jednoznačne definované tvarmi a farbami. Dobrým príkladom sú napríklad
ľudské vlasy, alebo aj črty ľudskej tváre. Existujú algoritmy, ktoré na základe týchto
štruktúr a gradientov častí obrazu dopočítavajú pixely definujúce regióny vo vyššom
rozlíšení. Zároveň sa osvedčilo spracúvať silno a slabo štruktúrované regióny separátne
a v rôznych škálach pre rôzne priestorové štruktúry [11]. Algoritmy v tejto oblasti sia-
hajú od jednoduchých, matematicky založených a pracujúcich v priestorovej doméne
obrazu, využívajúcich napríklad interpolácie (ako [12]), po prístupy založené na príkla-
doch a učení na základe vzoriek [13]. Obe strany spektra nesú svoje problémy a hodia
sa do odlišne náročných podmienok.

1.2.2.1 Matematicky motivované metódy

Najzákladnejšími matematickými metódami, určenými k prevzorkovaniu záberu, čiže
aj zvýšenia rozlíšenia, bez akejkoľvek informácie na pozadí, kontextu, a bez súvislosti
s ďalšími snímkami videa, sú interpolácie. Chýbajúce pixely dopočítavajú na základe
už existujúcich v ich susednosti. Najpoužívanejšia a najefektnejšia interpolácia je bi-
kubická, potom bilineárna, a technika najbližšieho suseda, ktorá je najrýchlejšou a
najprimitívnejšou možnosťou. Napriek tomu, že interpolácie sú rýchlym riešením, ne-
prinášajú dostatočne uspokojivé výsledky v doménach, kde je najvyšší dôraz kladený
na jednoznačnosť zachytenej informácie [14]. Interpolácie, posudzujúce každú snímku
videa individuálne, sú totiž principiálne obmedzené množstvom usmerňujúcej infor-
mácie v tej danej snímke a nedokážu zužitkovať kvantitatívnu výhodu videa oproti
fotografiám [15]. Ďalším matematicky motivovaným prístupom je technika zvaná Ma-
ximum A Posteriori (MAP), založená na Bayesovskej teórii. Zvyšovanie rozlíšenia videa
pomocou MAP techniky sa ukázalo úspešnejšie v zachovávaní ostrých rohov v obraze.
Táto technika podlieha ďalšiemu výskumu, keďže kombinuje odhad obrazu vo vysokom
rozlíšení a aproximujúcu sústavu rovníc spájajúcu ho so záberom z videa [14]. Podľa
tohto článku sa ďalej oplatí predspracúvať zábery z videa pred tým, než sa pokúsime
o zvýšenie ich rozlíšenia, a to najmä odstránením šumu a rozmazania. Rozmazanie
je pre video inherentným problémom. Hoci ľudský mozog ho pri rýchlo sa striedajú-
cich záberoch potláča [15], pre algoritmy predstavuje značnú komplikáciu. Schopných
algoritmov potláčajúcich rozmazanie bolo navrhnutých viacero: [3], [16], [17].

1.2.2.2 Zvyšovanie rozlíšenia s využitím neurónových sietí

Naproti matematickým metódam stoja prístupy založené na strojovom učení, ktoré
donedávna v praxi čelili problémom s dostupnosťou dostatku trénovacích vzoriek, a
stále do istej miery čelia, čo môže mať veľký dopad práve na unikátne detaily - ob-
zvlášť tváre, čiastočne aj evidenčné čísla vozidiel. Ich vhodnosť pre praktické použitie
je otázna, kvôli výkonu nutnému na rýchle fungovanie takýchto algoritmov pri pou-
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Obr. 1.3: Výsledok (napravo) aplikácie prístupu [3] na rozmazaný záber (naľavo)

žití v reálnom čase. Po rozsiahlom prieskume sme došli k zisteniam, že v čase písania
práce sú relevantné algoritmy dedikované zvyšovaniu rozlíšenia videa pomocou hlbo-
kých neurónových sietí v stave tvorby zverejniteľnej implementácie [18] [19], alebo
neposkytujú dostatočnú dokumentáciu k tomu, aby sme vrámci tejto práce vedeli tieto
algoritmy otestovať na vlastných záznamoch z domény bezpečnostných kamier [20]
[21] [22], alebo zdrojový kód vôbec nezverejňujú [23]. Veľmi sľubný, rozsiahly a po-
merne nový toolkit, obsahujúci množstvo algoritmov zameraných na prepojenie po-
čítačového videnia a hlbokých neurónových sietí, ktoré obsadili popredné miesta na
udalosti NTIRE (https://cvlai.net/ntire/2024/), vrátane zvyšovania rozlíšenia videa s
využitím viacerých dedikovaných modelov a algoritmov, je MMagic [24]. Žiaľ však ne-
poskytuje dostatočne obsiahlu dokumentáciu, a návody k použitiu metód relevantných
pre našu prácu sú momentálne k dispozícii len v čínskom jazyku, z ktorého automa-
tický, aplikáciami tretích strán sprostredkovaný preklad do angličtiny je pri odbornej
terminológii veľmi nespoľahlivý.

1.2.3 Zlepšenie separovania odtieňov

Prístupy zvyšujúce rozlíšenie napomáhajú zvýrazneniu detailov na zábere, samostatný
význam však nesú len za dobrých svetelných podmienok. Za zníženého osvetlenia je
prvoradé objekty a tvary na zábere viditeľne separovať odtieňmi. Je ľahké presvedčiť sa
pomocou očných klamov, že zrakové centrum ľudského mozgu vníma farebné odtiene
relatívne, porovnáva ich medzi sebou navzájom. Robí tak, aby za ľubovoľných svetel-
ných podmienok zachovalo schopnosť odhadnúť skutočnú farbu objektov a klasifikovať
ich na jej základe. V digitálnej podobe však pixelom priraďujeme absolútne hodnoty z
určitého diskrétneho rozsahu, ktorý je ešte k tomu značne menší, než rozsah odtieňov
a jasností, s akými vie pracovať ľudský zrakový systém [8]. V rámci tohto digitálneho
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rozsahu by sme sa preto chceli čo najviac priblížiť takému podaniu vizuálnej informácie,
na základe ktorého dokáže mozog spoľahlivo separovať a klasifikovať objekty. Zlepšenie
záberu vieme robiť na základe jeho samotného, alebo na základe ďalších záberov. Medzi
najtradičnejšie spôsoby samozlepšenia snímku patrí zlepšenie kontrastu. Metódy zame-
riavajúce sa na zlepšenie kontrastu sa delia na priame – tie definujú mieru kontrastu
a snažia sa ju zlepšiť, a nepriame – tie zlepšujú kontrast využitím nevyužitých častí
dynamického rozsahu bez toho, aby definovali nejakú špecifickú mieru kontrastu [7]. Al-
goritmy zlepšujúce kontrast využívajú dva základné prístupy. Prvým je ekvalizácia his-
togramu, kedy sa obvykle snažíme čo najrovnomernejšie rozprestrieť početnosti pixelov
jednotlivých intenzít po celom spektre. Nemusíme sa však snažiť len o rovnomerné roz-
delenie, využíva sa aj logaritmický prístup, alebo power-law pravidlo [25]. K zachovaniu
úrovní vstupných jasov bolo navrhnutých viacero metód založených na ekvalizácii histo-
gramu: Stred zachovávajúca bi-histogramová ekvalizácia (BBHE - mean preserving bi-
histogram equalization), rovno-obsahová dualistická podobrazová ekvalizácia (DSIHE
- equal area dualistic sub-image histogram equalization), bi-histogramová ekvalizácia
minimalizujúca strednú jasovú odchýlku (MMBEBHE - minimum mean brightness er-
ror bi-histogram equalization), rekurzívna stredno-rozptylová histogramová ekvalizácia
(RMSHE - recursive mean-spread histogram equalization) a multi-histogramová ek-
valizácia [7]. Druhým zo základných prístupov, ktoré využívajú algoritmy zlepšujúce
kontrast záberov, je mapovanie odtieňov. Jeho cieľ je v podstate rovnaký, ako pri ekva-
lizácii histogramu – komprimovať alebo premapovať dynamický rozsah HDR obrazov
do rozsahu vhodného pre zobrazenie na zariadeniach so štandardným dynamickým roz-
sahom (SDR) [8], zachovajúc pri tom čo najviac detailov a vizuálnej informácie a pokiaľ
možno pôsobiac prirodzene – hoci prirodzený vzhľad obrazu nemusí byť pri bezpeč-
nostných kamerách prioritou (má však význam napríklad aj pre redukciu zrakovej a
kognitívnej únavy v prípade, že za monitormi systému dlhodobo sedí poverený pracov-
ník). Medzi algoritmy premapovania odtieňov patria napríklad nasledovné techniky:

• Reinhardove mapovanie odtieňov sa snaží napodobniť spôsob, akým sa ľudský
zrak adaptuje na rozličné svetelné podmienky. Komprimuje dynamický rozsah
obrazu tak, aby zachovalo lokálny kontrast a saturáciu. Pôvodne išlo o asistovaný
proces - vyžadoval od zhotoviteľa snímky vyznačenie najsvetlejšieho, najtmav-
šieho a stredne tmavého (referenčného) miesta v obraze k vypočítaniu dynamic-
kého rozsahu. Neskôr Reinhard a kolektív automatizoval tento proces využívajúc
kruhový Gaussov operátor v rôznych škálach aplikovaný na celý záber, opravujúc
presvetlené a tmavé regióny. [26]

• Fattalove mapovanie odtieňov taktiež priorizuje lokálny kontrast a snaží sa ho
zlepšiť, zatiaľ čo zábery si zachovávajú prirodzene pôsobiaci vzhľad. Kompri-
muje gradient jasového komponentu obrazu a riešením jeho Poissonovej rovnice
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konštruuje prislúchajúci obraz v zobraziteľnom dynamickom rozsahu. [27]

• Dragove mapovanie odtieňov sa opäť zameriava na lokálny kontrast, a taktiež na
potlačenie halo efektov, ktoré sú bežným nežiadúcim sprievodným javom prema-
povávania odtieňov. Pracuje s adaptívnym upravovaním logaritmických základov,
na báze ktorých sa komprimujú hodnoty jasnosti v obraze. Na zlepšenie tmavých
oblastí používa zvyšovanie kontrastu. [28]

• Mantiukove mapovanie odtieňov modeluje generický operátor, ktorý aproximuje
lokálne a globálne operátory využité v iných algoritmoch výpočtovo nenároč-
nými operáciami. Jeho výsledky sú často vizuálne neodlíšiteľné od algoritmov na
mapovanie odtieňov vyžadujúcich značné množstvá strojového času. [29]

Ukázalo sa, že exponenciálne operátory mapovania odtieňov prinášajú vyššie sub-
jektívne vnímané zlepšenie dynamického rozsahu než logartimické [8]. Mapovanie odtie-
ňov sa obvykle vykonáva len v kanáli iluminácie a na logaritmickej škále, pričom mapa
žiarenia vo floatovej reprezentácii sa konvertuje do 8-bitovej reprezentácie použiteľ-
nej k renderovaniu [7]. Vyšší dynamický rozsah možno taktiež dosiahnuť kombináciou
viacerých obrázkov z rovnakej scény s rôznymi časmi expozície. Relatívne intenzity
presvetlených častí sú kvalitne zachytené pri krátkej uzávere objektívu, zatiaľ čo pri
dlhej stihne na šošovku dopadnúť dostatok svetla na to, aby vynikli aj rozdiely me-
dzi intenzitami v tmavej časti záberu [8]. Výsledkom je mapa floatov reprezentujúcich
hodnoty žiarenia s hodnotami proporčnými tomu v skutočnej scéne. Tento spôsob je
však v kontexte bezpečnostných kamier prakticky takmer nepoužiteľný, keďže je nutná
podpora zo strany samotnej kamery, ktorá nie je u väčšiny produktov samozrejmosťou,
a to z logického dôvodu, že luxus vyhotovovania jedného záberu niekoľkokrát sa veľmi
ťažko zmysluplne realizuje v rámci videa. V tom obvykle priorizujeme počet snímok
za sekundu, nehovoriac o výpočtovej náročnosti okamžitého kombinovania a ladenia
týchto záberov. To je výzvou napríklad aj pre najmodernejšie vlajkové lode medzi sú-
časnými smartfónmi, využívajúcimi vysokovýkonné čipy, akými bezpečnostné kamery
v praxi nedisponujú, a z ekonomických dôvodov pravdepodobne ešte dlho disponovať
nebudú.

1.2.4 Kontextová fúzia

Algoritmy zlepšujúce všeobecné videá zvyčajne venujú zvýšenú pozornosť odstraňo-
vaniu zahmlenia, šumu, oparu a atmosférických javov. Neprodukujú však uspokojivé
výsledky pri nočných záznamoch z bezpečnostných kamier, pretože sú závislé od jasu
pixelov [4]. Výhodou domény bezpečnostných kamier, ktorú uchopili niektoré algo-
ritmy, je, že kamery sú obvykle umiestnené staticky pred tú istú scénu po celý čas –
teda cez deň aj v noci. Tým pádom si dokážeme ukladať referenčné zábery, na ktorých
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je značná časť scény zhodná so zábermi vyhotovenými v ľubovoľnej fáze dňa, za ideál-
nych svetelných podmienok, a použiť tieto na dopĺňanie informácii vysokej kvality za
zníženej viditeľnosti. Tomuto procesu sa najčastejšie hovorí kontextová fúzia a algorit-
mus kombinuje snímky z rôznych častí dňa automaticky. Jednu z možných schém f[zie]
vidíme na obrázku 1.4

Obr. 1.4: Schéma kontextovej fúzie dát z denného a nočného záberu scény navrhnutá
v článku [4]

Algoritmy na fúziu možno rozdeliť do kategórii na spodnú, strednú a vysokú úroveň.
Tieto sa tiež označujú ako úroveň pixelov, úroveň čŕt a symbolická úroveň [7]. Za zá-
kladný môžeme považovať prístup, kedy detekujeme hrany v obraze, a na základe nich
ho rozdelíme do segmentov, pre ktoré sa snažíme určiť správny odtieň spárovaním s pri-
slúchajúcimi segmentmi v záberoch za lepších svetelných podmienok. Veľkým prínosom
pre detekciu hrán postáv, ktoré patria obvykle medzi najzaujímavejšie informácie vo vi-
deu, vie byť infračervené spektrum. Mnohé bezpečnostné kamery disponujú aj týmito
infračervenými senzormi. Očakávateľne však nastáva značná komplikácia pri rekon-
štrukcii odtieňov objektov, ktoré sa za svetla pred kamerou nevyskytovali, a odhad ich
farby, ktorá je relatívna voči objektom, ktoré sa nachádzali aj na svetlom aj na tmavom
zábere, je výzvou. Ďalším stávajúcim problémom je ako sa vysporiadať s neuniformným
osvetlením. Mnohé z algoritmov sú založené na uniformnej iluminácii, a nevedú si dobre
ak máme viacero rôznorodých zdrojov svetla. Tými sú zvyčajne jeho umelé zdroje ako
lampy, reflektory, ich odrazy a podobne. V takýchto podmienkach je esenciálna správna
klasifikácia osvetlených a tmavých regiónov [4]. Najsľubnejšie sa v tomto ohľade javí
nasadenie neurónových sietí, napríklad v podobe samo-organizujúcich sa máp.
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1.3 Súhrn východísk

Vzhľadom na rozsiahlosť oblastí, v ktorých sa žiada zlepšovať kvalitu digitálneho ob-
razu, a ich individuálnu komplexnosť, nebol doposiaľ vyvinutý algoritmus, ktorý by
kombinovane cielil k zlepšeniu každej, alebo väčšiny zo zmysluplných metrík kvality.
Zámerom tejto práce bude preskúmať kombinácie algoritmov pre subdoménu bezpeč-
nostných kamier, avšak takých, ktoré sú v stave nasaditeľnosti do prevádzky, alebo ich
sprevádzkovanie je v súlade s rozsahom tejto práce. Mnohé z algoritmov prezentova-
ných v tejto kapitole žiaľ neponúkajú žiaden zdrojový kód ani prevzateľný softvér, a
nebudeme ich teda môcť otestovať. Viac o výbere testovaných algoritmov sa čitateľ
dozvie v podkapitole 2.4.
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Kapitola 2

Ciele a metodika práce

V tejto kapitole sa pozrieme na to, ako budeme postupovať pri aplikovaní akých prí-
stupov a algoritmov na aké testovacie kamerové záznamy.

2.1 Čas nasadenia algoritmu

Vzhľadom na nezanedbateľnú časovú náročnosť niektorých operácii nad snímkami hrá
rozdielovú rolu kedy v procese zaznamenania, spracovania, prípadného uloženia a zo-
brazenia záberu, sa aplikuje algoritmus.

• Pri systémoch, ktoré vyhotovovaný záznam ukladajú bez toho, aby bol v reálnom
čase sledovaný ľudským strážnikom, alebo nejakým algoritmom vyhodnocujúcim
kontext a potenciálnu nežiadúcu aktivitu v priestore, a teda tento záznam bude
vždy prehliadaný až po tom, ako došlo k aktivite, ktorú máme záujem na ňom
preskúmať, nie sme obmedzení časom na spracovanie videa. Aspoň nie do značnej
miery. Môžeme si teda dovoliť napríklad 10 sekundový úsek videa, povedzme že
tvorený 10 sekúnd × 30 fps = 300 snímkami, spracúvať pokojne niekoľko minút.
Nie je problematické spracúvať jednu snímku aj rádovo v desatinách sekundy.
Zároveň nečelíme žiadnym kompromisom v prípade nasadenia takého algoritmu,
ktorý na zlepšenie záberu v čase t používa informácie zo záberu v čase t+1 alebo
neskoršieho.

• Ak naopak zábery zobrazujeme v reálnom čase, je žiadúce, aby tieto zábery už
boli zlepšené, a teda zvýrazňovali informácie dôležité pre strážnika (či už v roli
fyzickej osoby alebo softvéru). V takom prípade je čas na zlepšenie snímky limito-
vaný počtom záberov snímaných za sekundu. V prípade algoritmov využívajúcich
neskoršie zábery na zlepšenie predošlých, sa musíme zmieriť s oneskorením. To je
však pri vhodne zvolenom algoritme konštantné a nemusí presahovať rádovo de-
siatky sekúnd, ktoré málokedy predstavujú rozdiel medzi dovolením a predídením

15
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nežiaducej udalosti (ale existujú aj také prípady nasadenia, kedy o účinku akti-
vácie bezpečnostných opatrení - obvykle na diaľku - rozhodujú tieto potenciálne
desiatky sekúnd).

V tejto práci sa pri testovaní a posudzovaní algoritmov najprv zameriame na prvý
prípad, a teda nebudeme brať do úvahy časovú limitáciu na zlepšenie záberov. Následne
pri prístupoch, ktoré sa ukážu ako efektívne, otestujeme alebo prepočítame na základe
času, ktorý sme odmerali, že potrebujú, či by bolo možné ich (poprípade v nejakej
odľahčenej, kompromisnej forme) aplikovať aj na druhý prípad, a zlepšovať nimi video
v reálnom čase.

2.2 Testovacie dáta

Hoci mnohé z algoritmov budú nezávislé od kontextu videa a záberov iných než práve
spracúvaného, nebudeme ich testovať na individuálne stojacich snímkoch, ale rovno na
videách. Tieto videá zaobstaráme z niekoľkých zdrojov, aby sme pokryli čo najviac
realistických situácii:

• Za pomoci reálnych bezpečnostných kamier zapožičaných školou sme nahrali nie-
koľko vlastných záznamov v relevantých prostrediach a za rôznych svetelných
podmienok, z rôznych vzdialeností. Aby nedošlo k porušeniu niečej ochrany sú-
kromia, postavou pohybujúcou sa v popredí záberov bol autor tejto práce. Prvá
z kamier je Annke T200. Táto kamera popri RGB zázname vyhotovuje aj ter-
málny záznam, ten však nie je v rovnakom rozlíšení, ani nezaberá rovnaký výsek
obrazu ako ten z RGB senzoru, preto bude nutné k jeho využitiu na zlepšenie
prislúchajúceho RGB videa nájsť zodpovedajúcu homografiu (viac v časti 2.4.7).
Touto kamerou sme nahrali dve dvojice prislúchajúcich RGB a termovíznych zá-
berov, jednu za dňa, a druhú večer po západe slnka, na tom istom mieste. Na
týchto videách v rozlíšení 1920 × 1080 pixelov na RGB zázname (interne nazva-
ných Annke_RGB_day a Annke_RGB_dark) a v rozlíšení 320 × 240 pixelov na
termo zázname (interne nazvanom Annke_thermo_day a Annke_thermo_dark),
sa prechádza autor vo vzdialenosti asi 5 až 25 metrov od objektívu kamery po
parkovisku a vo večernom videu aj na priľahlom trávniku, viď ukážky 2.1a, 2.1b,
2.2a, 2.2b.

Druhá z kamier je Hikvision DS-2CD2025FWD s infračerveným prisvecovaním.
Túto kameru bolo obtiažnejšie spojazdniť, no nakoniec sme prišli na to, že elek-
trický zdroj (v balení originálny dodaný nebol) mal nepatrne väčší priemer ko-
nektoru než kamera, a teda kamera ním nebola napájaná. Problém bol provizórne
vyriešený vsunutím drôtika a kameru sme uchytili k doske, ktorú sme pripevnili k
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(a) Annke_RGB_day (b) Annke_thermo_day

Obr. 2.1: Ukážky testovacieho záznamu z kamery Annke T200 za dňa

(a) Annke_RGB_dark (b) Annke_thermo_dark

Obr. 2.2: Ukážky testovacieho záznamu z kamery Annke T200 večer

zábradliu na balkóne u autora práce doma, na druhom poschodí. Ten sa následne
išiel poprechádzať v zornom poli kamery, a to najprv vo vzdialenosti asi 8 metrov
vzdušnou čiarou pri pohľade kamery takmer kolmo dole vo večernej tme na videu
Hikvision_dark_close v rozlíšení 640 × 360 pixelov 2.3, a potom vo vzdialenosti
zhruba 25 až 40 metrov od objektívu kamery v priestore prisvietenom pouličnou
lampou na videu Hikvision_dark_distant 2.4, v rozlíšení orezanom z pôvodných
640 × 360 pixelov na 480 × 360 pixelov.

Obr. 2.3: Ukážka videa Hikvision_dark_close
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Obr. 2.4: Ukážka videa Hikvision_dark_distant

• K prekvapivému zisteniu sa na základe nášho prieskumu na internete nenachá-
dza verejne dostupný dataset záberov z bezpečnostných kamier. Takýto mal byť
k dispozícii zdarma na stránke https://viratdata.org/, avšak prístup k nemu už
zjavne neexistuje. Na stránke sú však dve ukážkové videá, ktoré mal dataset obsa-
hovať. Prvé video, pre účely práce pomenované student_street, je v rozlíšení 1280
× 720 pixelov a zachytáva zhruba z výšky prvého nadzemného podlažia verejné
vonkajšie priestory pred budovami patriacimi univerzite v Spojených Štátoch
Amerických, v ktorých sa pohybujú ľudia za polooblačného počasia počas dňa,
vo vzdialenosti asi 10 až 50 metrov od objektívu kamery (viď ukážka 2.5).

Obr. 2.5: Ukážka videa student_street

Druhé video, pre účely práce pomenované "parking", je v rozlíšení 1920 × 1080
pixelov a zaznamenáva parkovisko v zadných priestoroch rozmernej budovy so



2.2. TESTOVACIE DÁTA 19

Obr. 2.6: Ukážka videa parking

zaparkovanými vozidlami, v daždi počas dňa, z výšky asi tretieho až štvrtého
nadzemného podlažia (viď ukážka 2.6). Na 53 sekúnd trvajúcom zázname prejde
5 ľudí s dáždnikmi vo vzdialenosti odhadom 20 až 60 metrov od objektívu kamery.
Kamera vykazuje mierne pohyby následkom prítomného vetra.

• Existuje množstvo verejných kamier dohľadového alebo podobného typu, z kto-
rých záznamy sú naživo zdieľané na internete, zadarmo a dostupne pre širokú
verejnosť. IP adresy týchto kamier možno získať zo zdrojových kódov webstrá-
nok, na ktorých sa nachádzajú, a napojiť sa na ne cez HTTP, alebo iný protokol
pomocou nami napísaného programu. Z týchto záznamov možno uložiť ich časť,
alebo na ne aplikovať algoritmy naživo, počas streamovania. Kvalita týchto videí
je rôzna, väčšinou však trpí nízkym počtom snímok za sekundu, nízkym rozlíše-
ním, a vysokou mierou šumu, najmä v noci. Tieto zábery sú tak dobrou výzvou
pre algoritmy, napriek tomu, že sú spravidla horšej kvality, než tie vyhotovené
väčšinou moderných bezpečnostných kamier. Ich výhoda je, že sú zbierané z ka-
mier umiestnených naprieč celým svetom, a teda v rôznych časových pásmach a
za rôznych poveternostných podmienok. Obvykle ale sledujú prostredie z väčšej
vzdialenosti, než je bežné pre bezpečnostné kamery, a niekedy ide o prostredia, v
ktorých by nasadenie bezpečnostných kamier ani nebolo opodstatnené.

Ako súčasť implementácie sme si vytvorili pomocný modul live_video_acquirement.py
s triedou LiveVideo, obsluhujúcou živé pripojenie v reálnom čase na vybrané ka-
mery z rôznych prostredí. Táto trieda jednak poskytuje funkcionalitu na nahratie
úsekov videa z týchto verejných kamier, jednak spravuje ich zoznam, a zároveň
bude slúžiť hlavnej triede, v ktorej sa aplikujú algoritmy na video, aby sme ich
vedeli nasadiť priamo na živý prenos.
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Obr. 2.7: Ukážka videa american_crossroad_traffic

Pomocou triedy LiveVideo sme zhotovili 4 záznamy, na ktorých budeme testovať
rôzne metódy zlepšenia. Na zázname american_crossroad_traffic (viď ukážku
2.7) je kolóna áut stojacich privrátene ku kamere, kým v opačnom smere prúdi
od kamery premávka. Toto video má rozlíšenie 800 × 450 pixelov a v najbliž-
šom bode sú autá asi 10 metrov vzdušnou vzdialenosťou od kamery. Vzhľadom
na nízku kvalitu záznamu, ktorý ani nie je originálne vyhotovovaný za účelom
monitorovania bezpečnostným systémom a identifikácie osôb a vozidiel, nepred-
pokladáme, že sa nám podarí zaznamenať evidenčné čísla vozidiel. Napriek tomu
sa na to môžeme sústrediť, pretože už malé obohatenie informácie môže vyvrátiť
výskyt, alebo zvýšiť pravdepodobnosť výskytu vozidla s danou štátnou pozná-
vacou značkou v danom čase na danom mieste. Nižšie rozlíšenie než na bežných
bezpečnostných kamerách tiež nie je irelevantné, keďže stačí, aby bola kamera s
vyšším rozlíšením umiestnená ďalej od pozorovaných vozidiel a efekt (rozlíšenie
vizuálnej informácie) by bol rovnaký.

Záznam dutch_street_sunset (viď ukážka 2.8) bude výzvou v inom ohľade než
rozlíšení. Ide o záber ulice v obytnej zóne, po ktorej prejde auto, približujúce sa
a vzďalujúce sa od kamery. Tento záznam v rozlíšení 1280 × 720 pixelov je však
vyhotovený počas západu slnka pri jasnej oblohe. Slnko je zachytené v ľavej časti
obrazovky a ukazuje obrovskú limitáciu dynamického rozsahu. Na zábere je celá
ulica, privrátená tienistou stranou, veľmi tmavá, zatiaľ čo obloha je presvetlená
západom slnka.

Na zázname german_marketplace_eve (viď ukážka 2.9) je z výšky zhruba pia-
teho nadzemného podlažia zachytené námestie, na ktorom sa pohybujú ľudia, z
toho jeden človek prejde skrz na bicykli. Ide o večernú scénu, kde časti námes-
tia sú zaliate svetlom pouličných lámp, zatiaľ čo iné časti sú podstatne tmavšie.
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Obr. 2.8: Ukážka videa dutch_street_sunset

Vzhľadom na rozlíšenie 800 × 600 pixelov a vzdialenosť od pohybujúcich sa osôb,
nie je šanca rozpoznávať tváre, bezohľadu na sofistikovanosť algoritmu. Nemiesto
toho sa zameriame najmä na rozoznateľnosť detailov vo videu.

Obr. 2.9: Ukážka videa german_marketplace_eve

Záznam strba_snow_fog (viď ukážka 2.10) v rozlíšení 1280 × 720 pixelov ne-
obsahuje žiadne pohybujúce sa objekty, avšak samotná kamera sa pomaly otáča
pozdĺž horizontálneho oblúku. Toto video je zaujímavé z toho hľadiska, že je na
ňom športový areál zachytený v hmle a snehu. Toto je poveternostný scenár,
ktorý je bežný v zimných mesiacoch, no nie v mesiacoch písania práce. Preto
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Obr. 2.10: Ukážka videa strba_snow_fog

sme si vybrali tento areál na otestovanie správania a prípadných nedostatkov
algoritmov v takýchto špecifických, no nie neobvyklých podmienkach.

Okrem nahraných videí, budeme vedieť testovať aj prístup k týmto a zopár ďalším
streamom v reálnom čase, a zlepšovanie kvality ich záberov bez spôsobenia omeš-
kania a signifikantného výpadku nespracovaných záberov. Medzi ďalšími kame-
rami, na ktoré sa nám podarilo pomocou OpenCV pripojiť, je napríklad kamera
na pláži v Brazílii, situovaná pred plastovými stolami a stoličkami v popredí pa-
liem, alebo kamera na malom lokálnom letisku, v Spojených Štátoch Amerických,
obsluhujúcom veľké množstvo malých motorových lietadiel.

Problémom, ktorému ale čelíme, a ktorý sa nám nepodarilo vyriešiť, je nízka
frekvencia snímok za sekundu získaných po pripojení sa na vzdialené kamery cez
Python. Na webstránkach, kde tieto scenérie možno sledovať naživo, je počet
snímok za sekundu vyšší, než k akému vieme pristupovať v rámci nášho prog-
ramu. Hlásená hodnota počtu snímkov za sekundu prenášaného videa je však pô-
vodná, nezodpovedajúca snímkam prijatým na našom konci, a teda týchto menej
snímok naskladaných do záznamu s rovnakou frekvenciou zapríčiňuje zrýchlený
chod nahraného videa. Vzhľadom na podstatu testovaných algoritmov však nejde
o kritický nedostatok.

2.3 Návrh testovacieho programu

Implementačným jadrom tejto práce bude program, pomocou ktorého budeme môcť na
testovacie videá aplikovať rôzne zlepšovacie algoritmy, kombinovať ich, a porovnať ich
výsledky v subjektívnych (napr. vizuálny posudok) a objektívnych (napr. čas aplikácie
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prepočítaný na jednu snímku v závislosti od jej rozlíšenia, alebo jeden pixel, prípadne
iných metrík) mierach.

2.3.1 Voľba programovacieho jazyka a knižníc

Tento program bude napísaný v programovacom jazyku Python, verzia 3.12. Rozhodli
sme sa tak preto, lebo pre Python existuje solídna paleta open-source knižníc, ktoré
ponúkajú rozsiahle schopnosti v oblasti práce s obrazom a digitálnou informáciou, a
majú efektívne implementovaných množstvo funkcii a algoritmov relevantných pre našu
prácu. Medzi použité knižnice. bude okrem vstavaných modulov a modulov prevzatých
z githubových stránok algoritmov, patriť:

• OpenCV, verzia 4.9, je Intelom vyvíjaná open-source knižnica obsahujúca viac
než 2500 algoritmov v oblasti počítačového videnia,

• NumPy, verzia 1.26, poskytuje infraštruktúru pre prácu s vektormi a maticami
(ktorými je digitálny obraz reprezentovaný), a funkciami nad nimi definovanými,

• PIL (Python Imaging Library), verzia 10.2.0, je open-source knižnica slúžiaca na
manipuláciu s digitálnym obrazom,

• PyTorch, verzia 2.2.1+cpu, je knižnica strojového učenia založená na knižnici
Torch.

Hoci jazyk C++, s ktorým taktiež funguje knižnica OpenCV, je všeobecne rýchlejší
než Python, keďže je kompilovaný, a teda transformovaný priamo do strojového kódu,
OpenCV v Pythone je len wrapperom nad originálnym kódom v C++. Kombinuje tak
rýchlosť C++ a jednoduchosť Pythonu. Rozdiel v rýchlosti behu OpenCV algoritmov
medzi C++ a Pythonom je obvykle menej ako 1%, a v najhoršom prípade, pre základné
funkcie je uvádzaný ako menej než 4%. Táto úvaha je dôležitá kvôli tomu, že práca s
obrazom je všeobecne veľmi výpočtovo náročná, o to viac, keď sa pozrieme napríklad
na hlboké neurónové siete nad obrazovými dátami a budeme ich chcieť využiť na úpravu
záberov vo videu.

2.3.2 Porovnávanie výsledkov

• Pri algoritmoch, neporovnávajúcich rozlíšenie pôvodného a upraveného záznamu,
si tieto videá zobrazíme paralelne v jednom rozdelenom okne, bikubickou inter-
poláciou naškálované tak, aby toto okno zaberalo celú obrazovku monitora.
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• Pri algoritmoch zameraných (aj) na rozlíšenie, sa zameriame na takú časť obrazu,
ktorá po preškálovaní zaberie zhruba polovicu monitora, aby bolo možné najjed-
noznačnejšie porovnať výsledok s preškálovaním rovnakého výseku na rovnakú
veľkosť inou formou.

Na zobrazovanie videí vytvoríme prehrávač, ktorý dokáže prehrať jedno až štyri
videá na jednom monitore naraz, a to tak, aby maximalizoval priestor, ktorý tieto vi-
deá vypĺňajú, v prospech jednoduchšieho vizuálneho porovnania kvality. Ak nebudeme
chcieť videá o rovnakej veľkosti škálovať, k dispozícii budú aj sesterské metódy, ktoré
dodržia pri prehrávaní pôvodné rozlíšenie. Tento prehrávač taktiež umožní tieto koláže
paralelne bežiacich videí ukladať v nejakom zo štandardných formátov ako mp4 alebo
avi.

Zároveň do programu zahrnieme checkpointy, v ktorých bude zaznamenaný čas od
spustenia programu, aby sme vedeli vyhodnotiť a porovnať časovú náročnosť jednotli-
vých procedúr. Program bude tiež obsahovať zabudovanú infraštruktúru umožňujúcu
dostatočne rýchle procedúry aplikovať v reálnom čase na živé záznamy z online kamier.

2.3.3 Aplikácia algoritmov

Každý z testovaných algoritmov bude implementovaný v samostatnej metóde, ktorá
bude umožňovať nastavenie jeho parametrov (ak nejakými disponuje) pri jej volaní.
Vstupom do týchto metód aj výstupom z nich bude video, takže bude možné takto ap-
likáciu algoritmov reťaziť. Okrem toho pre algoritmy aplikované na zábery samostatne,
väčšinou tie, špecializujúce sa všeobecne na zlepšovanie nejakej z metrík kvality digi-
tálneho obrazu, ktoré sme si zaviedli v prvej kapitole, vytvoríme metódy, ktoré budú
tieto procedúry aplikovať len na jeden vstupný záber a vracať tento záber upravený. To
sa nám bude hodiť, keď budeme chcieť aplikovať kombináciu zlepšovacích algoritmov
záber po zábere, napríklad pri spracúvaní videa v reálnom čase. Nastavenia parametrov
týchto algoritmov budú mať globálnu pôsobnosť a meniteľnosť.

2.4 Testované algoritmy

Otestujeme relevatné algoritmy, ktoré sú obsiahnuté v open-source knižniciach, alebo
ktorých kód je zverejnený na internete. Pokiaľ je nasadenie algoritmu komplikované,
budeme pracovať len s takými kódmi a knižnicami, ktoré majú prehľadnú dokumen-
táciu v angličtine. Ťažiskom tejto práce nie je vývoj a zavádzanie procedúr na základe
teoretických základov, je ním použitie a porovnanie širokého množstva metód v do-
méne bezpečnostných kamier. Taktiež tým pádom opomenieme experimentálne návrhy
algoritmov testovaných len na akademickej pôde, bez implementácie použiteľnej v re-
álnej prevádzke na vlastné účely, napriek tomu, že sme takéto algoritmy spomenuli v
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prvej kapitole, keďže predstavujú zaujímavé nové možnosti, ktoré pri rýchlosti vývoja
technológii digitálneho obrazu môžu byť už v dohľadnej dobe jednoho až pár rokov
zavádzané do prevádzky.

Nešťastným, no pochopiteľným faktom, ktorý znižuje strop možností tejto práce,
je, že v podstate veštky najschopnejšie moderné implementácie softvérového skvalit-
ňovania digitálneho obrazu sú v rukách globálnych technologických spoločností, ktoré
si starostlivo strážia svoje know-how, do ktorého získania na výskumnej úrovni, a ná-
sledne jeho vyladenia pre praktické nasadenie, investovali milióny dolárov. Open-source
algorimty, prezentované malými univerzitnými a nadšeneckými tímami teda len ťažko
dokážu byť kompetitívne proti technológiam zabudovaným do zariadení od veľkých
svetových výrobcov elektroniky, medzi ktorými panuje stav ostrej konkurencie a riva-
lity, a na ktorých sa podieľalo mnohonásobne viac odborníkov s mnohonásobne väč-
šími dostupnými prostriedkami. Táto rivalita je v posledných rokoch najväčšia na trhu
smartfónov, kde spoločnosti ako Apple, Samsung, Huawei, Xiaomi a ďalšie dokázali
vyvinúť pre svoje kamerové sety v telefónoch softvér, ktorý silou dodatočného spra-
covania často dorovnáva dedikované digitálne fotoaparáty a zrkadlovky napriek tomu,
ako veľmi sú znevýhodnené fyzikálnymi limitmi niekoľkonásobne menšej fotografickej
aparatúry. Toto platí aj v porovnaní s dedikovanými kamerami, o to viac, keď sa zaobe-
ráme bezpečnostnými kamerami, ktoré sú jednak cenovo značne limitované na úrovni
individuálneho zariadenia, a zároveň na úrovni spoločností, keďže toto odvetvie nie je
dostatočne ziskové na to, aby si výrobcovia bezpečnostných kamier mohli dovoliť vývoj
softvérov dodatočného spracovania, aký si môžu dovoliť poprední výrobcovia smartfó-
nov. To nás však neodrádza, prejdime si teda algoritmy, ktoré dokážeme implementovať
v tejto práci:

2.4.1 Zaostrenie obrazu

Pri zaostrovaní obrazu využijeme dve metódy:

• Aplikáciu Laplaceovského hranového filtra, kde otestujeme rôzne matice, ktorých
prikladaním ku každému pixelu a jeho okoliu zvýrazníme hrany v zábere.

• Zaostrenie odčítaním rozmazaného obrazu, kedy si najprv vytvoríme kópiu zá-
beru, tú rozostríme Gaussovským rozmazaním a 0.X násobok tohto rozostreného
obrazu odčítame od 1.X násobku pôvodného obrazu, aby sme zachovali rozsah in-
tenzít, pričom vyskúšame rôzne hodnoty X, ako aj rôzne hodnoty okolia a strednej
odchýlky pri rozmazávaní.

Obe metódy sú všeobecne dlho známe a používajú sa pri zaostrovaní digitálnych obra-
zov, bez ohľadu na doménu. Nasádzať ich teda budeme snímku po snímke a uvidíme,
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Obr. 2.11: Ukážka výsledku odstraňovania šumu nelokálným priemerovaním z článku
[5]. Naľavo je pôvodný obraz, uprostred obraz zašumený Gaussovským šumom a na-
pravo je obraz po aplikácii algoritmu. Všimnime si, že táto fotografia je veľmi vhodná
na jeho nasedenie, pretože obsahuje veľa opakujúcich sa častí, priemerovaním medzi
ktorými možno spoľahlivo odstrániť šum.

aký efekt budú mať na videá z bezpečnostných kamier cez deň, v noci, a v rôznych
iných podkladových atribútoch kvality.

2.4.2 Odstránenie šumu

Nežiadúcim efektom pri videu z bezpečnostnej kamery by bolo, keby sme pri snahe
odstrániť šum rozmazali obraz vyhladzovaním a nevyberane ho tak zbavili informá-
cie. V našej oblasti je totiž zachytená informácia prioritou, a uhladený vzhľad videa
je až sekundárny - ani nie tak pre ľudských pozorovateľov, ako pre ďalšie algoritmy,
ktorých výsledok nasadenia by mohol šum znehodnotiť, ako je napríklad veľmi reálne
pri metódach využívajúcich hlboké neurńové siete, ktoré v záujme lepšieho výsledku
preferujú čo najmenej rušivej šumovej informácie nesúvisiacej s kontextom. Preto po-
užijeme metódu odstraňovania šumu nelokálným priemerovaním [5]. Jej algoritmus je
implementovaný v OpenCV a pozerá sa na obraz po malých výrezoch o veľkosti rá-
dovo v pixeloch, pre ktoré hľadá výrezy rovnaké alebo takmer rovnaké inde v obraze
(pre lepšiu predstavu viď obr. 2.11), a následne priemeruje hodnoty ich pixelov, aby
tak z nich odstránil jedinečný šum. Táto metóda je značne pomalšia než jednoduché
metódy vyhladzujúce obraz ako napríklad Gaussovské rozmazanie, no kompromituje
informáciu obsiahnutú v zábere do podstatne nižšej miery. Jej sila zároveň rastie, ak
využijeme k vyhľadávaniu podobných častí obrazu aj ďalšie snímky, ktoré máme v prí-
pade videa k dispozícii. To je obzvlášť prínosné v prípade bezpečnostných kamier, kde
nás často zaujíma práve informácia nevyskytujúca sa nikde inde na zábere - napríklad
tvár konkrétneho človeka - avšak obsiahnutá na ďalších záberoch, a to s vysokou prav-
depodobnosťou nezašumená, alebo aspoň zašumená v iných bodoch inou intenzitou.
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2.4.3 Zlepšenie kontrastu

O zlepšenie kontrastu v testovacích videách (tam, kde sa to bude javiť ako prínosné), sa
pokúsime pomocou ekvalizácií histogramu. Budeme ich aplikovať na jednotlivé snímky
individuálne. V špecifických prípadoch, napríklad pri rozsvietení reflektorov auta na
inak pomerne tmavom videu, môže byť z hľadiska zachovania percepcie nemennosti
okolia prínosné posudzovať jasnosť vrámci rozsahu intenzít naprieč celým videom, nie
len v rámci daného záberu, avšak z hľadiska rozoznania informácie, čo je pre doménu
bezpečnostných kamier kľúčovým, by šlo o degradáciu. Pri prieskume súčasného vy-
užívania ekvalizácie histogramu vo videách sme sa však na internete stretli len s indivi-
duálnou aplikáciou po snímkach, a to aj pri prístupoch navrhovaných odbornou obcou
[30].

Keďže pracujeme primárne s obrazmi reprezentovanými na úrovni farebných ka-
nálov (RGB), a kontrast nutno posudzovať vzhľadom na globálne hladiny intenzity
jednotlivých pixelov, teda uniformne, bez ohľadu na farebný kanál, použijeme formát,
ktorý oddeľuje komponent jasnosti do separátneho kanálu, na ktorý budeme ekvali-
záciu histogramu aplikovať, zatiaľ čo farbu uschováme v kanáloch, ktoré nezmeníme.
Takýmto formátom je napríklad YCbCr, využívajúci zložku Y na reprezentáciu jasu, a
zložky Cb a Cr na reprezentáciu modrého a červeného chrominančného komponentu.

Praktickým nedostatkom základnej ekvalizácie histogramu v mnohých scenároch
sú prípady, kedy pri redistribúcii síce zvýrazníme jasové rozdiely vo väčšine obrazu, no
zlejeme ich v nejakej podčasti, ktorá pritom pre nás nesie veľký význam z hľadiska
poskytnutej užitočnej informácie. Tento jav by sa mohol manifestovať napríklad pre-
svetlením tváre nasvietenej umelým zdrojom svetla, kedy by klasická ekvalizácia histo-
gramu využila väčšinu z rozsahu zobraziteľných jasov na reprezentáciu tmavého okolia.
Preto využijeme aj metódu adaptívnej ekvalizácie histogramu, ktorá posudzuje záber
po blokoch (disjunktných, a to rádovo o uhlopriečke v spodných desiatkach pixelov,
prípadne jednotkách pixelov) a ekvalizuje pre ne histogramy nezávisle. Aby pri tomto
nedochádzalo k zvýrazneniu šumu, pre histogram každého bloku platí limit kontrastu,
ktorý ak nejaké pixely prekročia, sú ich intenzity pred samotnou ekvalizáciou orezané,
a prevyšujúce hodnoty intenzity uniformne prerozdelené medzi pixely prislúchajúce k
iným intenzitám.

2.4.4 Odstránenie rozmazania

Odstránenie rozmazania spôsobeného pohybom objektov v scéne alebo pohybom sa-
motnej kamery, ak ide o takú inštaláciu, síce nemá viditeľný význam z hľadiska sle-
dovaného videa, keďže ľudský mozog si informácie z jednotlivých záberov spája do
súvisle definovaného obrazu, ale má význam z hľadiska individuálneho záberu, ktorý
môže byť niekedy nutným k identifikácii pohybujúcej sa osoby či vozidla, najmä pri
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retrospektívnom vyšetrovaní, a tiež má význam v rámci predspracovania pre ďlašie
algoritmy, obzvlášť pre neurónové siete.

Hoci existujú aj neurónové siete trénované špecificky na úlohu odstraňovania rozma-
zania fotografie, my si vyberieme matematickú metódu, a to dekonvolúciu vo frekvenč-
nom spektre, pričom budeme predpokladať, že k rozmazaniu došlo aplikáciou gaus-
sovského vyhladzovacieho filtra, a pokúsime sa toto vyhladenie zvrátiť a dostať tak
obraz bez rozmazania. Nasadenie neurónových sietí na túto marginálnu úlohu, kde čo
najdeterministickejšie dopočítanie informácie preferujeme pred jej odhadom, by bolo
v našej doméne použitia nadbytočným, až kontraproduktívnym krokom, z hľadiska
časovej náročnosti a nespoľahlivosti odhadu unikátnych čŕt v obraze. Hoci nad postup-
nosťou záberov tvoriacich video by malo byť možné vytvoriť informovanejší algoritmus
odstraňujúci rozmazanie jednotlivých snímok, v čase písania tejto práce neregistrujeme
žiaden vhodný pre našu aplikáciu. Viaceré algoritmy sa venujú odstraňovaniu rozma-
zania spôsobeného pohybom človeka natáčajúceho video kamerou držanou v rukách,
avšak tento problém nie je dostatočne podobný nášmu.

2.4.5 Zvýšenie rozlíšenia

OpenCV poskytuje podporu pre zvyšovanie rozlíšenia ako matematickými metódami,
tak za pomoci hlbokých neurónových sietí. Z matematických metód budeme využívať
bikubickú interpoláciu. Pre využitie neurónových sietí na zvyšovanie rozlíšenia obrazu
disponuje OpenCV rozhraním dnn_superres so štyrmi rôznymi algoritmami. Modely
ku všetkým vieme stiahnuť z ich verejných githubových repozitárov. Tými sú:

• EDSR (Enhnanced Deep Super-Resolution) [31]

• ESPCN (Efficient Sub-Pixel Convolutional Network) [32]

• FSRCNN (Fast Super-Resolution Convolutional Neural Network) [33]

• LapSRN (Laplacian Pyramid Super-Resolution Network) [34]

Aby sme názorne demonštrovali schopnosti jednotlivých metód zvyšovania rozlíše-
nia, budeme sa sústrediť na výrez z videa dostatočne malý na to, aby sme po jeho
zväčšení daným testovaným násobiteľom nepresiahli rozmery obrazovky, a nemuseli
obraz opätovne preškálovávať, čím by sme kompromitovali výpovednú hodnotu porov-
nania týchto algoritmov.

2.4.6 Rekolorizácia

Veľká časť bezpečnostných kamier si už dnes pomáha infračerveným spektrom (760 nm
– 1 mm), alebo jeho časťou stredných až dlhších vlnových dĺžok označovanou ako termo-
vízne spektrum (8–15 µm). Zatiaľ čo viditeľného svetla je v neosvetlených, alebo slabo
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osvetlených nočných priestoroch tak málo, že na jeho zachytávanie v čase behu videa
by sme potrebovali minimálne kameru s mimoriadne rozmerným objektívom (ktorá by
bola drahá a v neposlednom rade nápadná), vo vlnových dĺžkach infračerveného spek-
tra vidíme výraznejšie práve to, čo nás pri dohľadových systémoch zaujíma zďaleka
najviac. To sú objekty teplejšie od ich okolia – predovšetkým ľudské postavy – a ich
pohyb. Pri tejto práci sme sa stretli s dvomi hlavnými spôsobmi využitia infračerveného
spektra.

• S paralelným záznamom v RGB aj v infračervenom spektre, kedy máme oba
záznamy k dispozícii samostatne, a žiadne informácie z jedného nie sú na žiad-
nej vrstve spracovania a zobrazenia prenášané do druhého. Na túto aplikáciu a
možnosť kombinácie vizuálnych informácii z oboch spektier a ich zvýraznenie sa
pozrieme v ďalšej podkapitole 2.4.7.

• S takzvaným prisvecovaním, kedy kamera automaticky kombinuje termovízny a
RGB obraz do šedotónového. Na rekolorizáciu tohto obrazu sa zameriame v tejto
podkapitole.

Všetky seriózne metódy rekolorizácie šedotónového obrazu fungujú na základe vy-
užitia znalostí [35], keďže neexistuje spôsob, ako správne deterministicky premietnuť
hodnoty na spektre medzi bielou a čiernou do farebného priestoru. Tieto znalosti môžu
byť dodané asistenciou ľudského používateľa na začiatku behu algoritmu, napríklad
formou voľby farebného odtieňa pre vybrané časti obrazu, alebo môžu byť extraho-
vané z nejakej databázy exemplárnych obrazov či vzoriek, alebo môžeme využiť hlboké
neurónové siete, ktoré po prvotnom kvalitnom natrénovaní modelu už nepotrebujú pre-
hľadávať množstvá dát v snahe získať referenciu k spracúvanému záberu. Šedotónový
obraz, ktorý je výsledkom prisvecovania, sa pokúsime rekolorizovať bez nutnosti ľud-
skej asistencie, ktorá by v oblasti použitia bezpečnostných kamier mohla byť ľahko
vnímaná ako značná nevýhoda systému, keďže by kládla zvýšené nároky na kvalifiko-
vanosť pracovníkov obsluhujúcich dohľadový systém. Napriek existencii algoritmov vy-
užívajúcich pre referenciu obraz z tej istej kamery zhotovený za denného svetla [4], [36],
takéto metódy zatiaľ nevieme otestovať, pretože k nim nie je poskytnutý zverejnený
kód, a pokúšať sa o implementáciu experimentálnych konceptov nie je v možnostiach
rozsahu tejto práce, ktorá cieli na vyššiu kvantitu ďalších metrík, o ktorých zlepšenie
sa snažíme. Na kolorizáciu preto využijeme hlbokú neurónovú sieť z projektu DeOl-
dify. Napriek tomu, že zverejnený kód je zamýšľaný primárne na použitie s prostredím
Jupyter Notebook, ktoré využívajú aj všetky ukážky, manuály a dostupná dokumentá-
cia na internete, pokúsime sa releventné metódy tohto projektu zapracovať priamo do
vyvíjaného programu, tak ako aj ostatné z algoritmov, ktoré plánujeme zahrnúť do tes-
tovania. Výhoda projektu DeOldify oproti iným je, že má aj metódu špecializovanú na
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rekolorizáciu videa, nie len jednotlivých záberov individuálne, čo by bolo jednak menej
efektívne a tiež by vzhľadom na neurčitosť problému mohlo viesť k nekonzistencii.

2.4.7 Detekcia pohybu pomocou IR/Termo spektra

Pri kamerových systémoch, ktoré vyhotovujú a paralelne ukladajú záznam aj v RGB
spektre, aj v infračervenom (termovíznom) spektre, vieme toto spektrum vlnových
dĺžok väčších od viditeľného svetla využiť na obohatenie RGB záberov o informáciu.
Túto informáciu ale môžeme rovno posunúť do kontextuálnej domény a využiť ju na
detekciu pohybujúcich sa objektov. To by síce bolo možné aj vo farebnom spektre, na-
príklad subtrakciou pozadia, ktoré je pri stacionárnych bezpečnostných kamerách (čo
je väčšina) statické, ale len dokým by sme mali sledovaný priestor dostatočne osvet-
lený. V tme by schopnosť detekcie výrazne upadala - pohyb by bolo ťažké odfiltrovať
od šumu, ak by vôbec bol viditeľný. Vďaka teplote vyššej oproti svojmu okoliu (ak
odmyslíme tropické noci v špecifických končinách, no aj tam by sme dokázali vidieť
kontrast človeka voči okoliu vyhriatému na akúkoľvek teplotu, keďže zachytené tepelné
žiarenie pohybujúcej sa postavy je rôzne v závislosti od termálnej izolácie oblečenia na
rôznych častiach tela, a obvykle neprekrytia tváre), však dokážeme detekovať pohyb
ľudí v IR spektre za akýchkoľvek svetelných podmienok.

Keďže rozlíšenie videa z objektívu snímajúceho v infračervenom spektre je obvykle
nižšie, než z objektívu snímajúceho vo farbe a často nepokrýva ani jeho celé zorné
pole, našou úlohou bude najprv spárovať a naškálovať infračervený, respetktíve v prí-
pade našej kamery Annke T200 termovízny obraz, s výsekom z RGB obrazu. V rámci
tejto práce si zvolíme jednoduchú a spoľahlivú metódu, kedy na úvod jednorazovo
požiadame používateľa, aby v okne, na ktorom je po jednej snímke z každej kamery
z rovnakého času, vyznačil najprv ľubovoľný bod v termovíznom obraze (taký, aký
ľahko jednoznačne označí aj v druhom spektre), potom tento istý bod vyznačí v RGB
obraze, a to isté spraví pre ešte jeden iný ľubovoľný bod. Náš program automaticky
nájde transformáciu, ktorú potom aplikuje na informáciu v termovíznom obraze, aby
ju zobrazil v RGB obraze na rovnakom mieste relatívne k objektom v scéne. Touto
informáciou budú kontúry objektov, extrahovaných subtrakciou pozadia, teda odčíta-
ním po sebe idúcich záberov v binárnom formáte, ktoré nám umožnia vidieť všetky
pohybujúce sa objekty s farbou odlišnou od ich pozadia (teda predovšetkým ľudí).



Kapitola 3

Výsledky a vyhodnotenie práce

V tejto kapitole si porovnáme účinok implementovaných metód a ich kombinácií na
testovacie videá a špecifiká scenárov, ktoré tieto videá zachytávajú. Taktiež porovnáme
ich časovú náročnosť. Hoci sa budeme zmieňovať aj o celkovom čase behu algoritmu
alebo ich kombinácii nad celými konkrétnymi videami, tak ako sú aj tieto algoritmy
stopované, od začiatku jeho aplikácie na prvý záber po jej dokončenie na poslednom,
nezarátavajúc čas potrebný na okolité všeobecnejšie pracovné úkony vykonávané prog-
ramom, hlavnou jednotkou časovej náročnosti by z intuície mal byť čas potrebný na
spracovanie jednoho záberu, a teda celkový čas behu algoritmu vydelený počtom zábe-
rov. Avšak nesmieme zabúdať, že na čas behu algoritmu vplývajú aj rozmery samotných
záberov, keďže pratkicky všetky z operácií sú aspoň v niektorej zo svojich fáz vykoná-
vané po individuálnych pixeloch alebo ich zoskupeniach. Rolu hrá aj množstvo ďalších
faktorov, no tie už sú špecifické pre scénu a informáciu individuálnych videí a nedajú
sa parametrizovať tak, ako počet záberov a počet pixelov, a tiež je ich vplyv na čas
obvykle menší v porovnaní s časovými a priestorovými atribútmi videí. Preto si ako
jednotku časovej náročnosti algorimtu zavedieme mikrosekundu na pixel (µs/px).

V predošlej kapitole 2 sme si predstavili zozbierané videá na ktorých budeme metódy
testovať, aj kategórie týchto metód podľa toho, na aký aspekt zvýraznenia informácie
pozorovateľovi alebo ďalšiemu algoritmu pri predspracovaní mierime. Keďže väčšinou
najvyššiu mieru celkového zlepšenia dosiahneme kombinovaným nasadením viacerych
metód, kde často bude aj značne záležať na ich poradí, nemá veľmi význam postu-
povať pri prezentovaní výsledkov po jednotlivých metódach tak, ako boli predstavené
v predošlej podkapitole 2.4. Postupovať po jednotlivých videách by síce nepostrádalo
význam, avšak mohlo by vniesť dojem špecifickosti a neuniverzálnosti, a bolo by ob-
tiažnejšie sledovať trendy a opakujúce sa situácie a efekty nezávisle od konkrétnych
scén. Budeme teda postupovať po akýchsi scenároch. Príkladom scenáru je napríklad
stredne vzdialený človek, pohybujúci sa v tme, alebo scéna s vysokým dynamickým
rozsahom. Jednoducho, určité výzvy, s ktorými sa bezpečnostné kamery môžu stretnúť
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v reálnom nasadení (samozrejme nie nutne všetky, ale väčšia či menšia podmnožina).
Do týchto scenárov potom budú reprezentatívne spadať testovacie videá.

Podstatným vyzrozumením je, že väčšina kombinácii algoritmov vo veľa prípadoch
v skutočnosti nevedie k zlepšeniu a môže práveže viesť k degradácii obrazu, najčas-
tejšie pridaním artefaktov. Ide teda o starostlivú voľbu správnych mechanizmov, so
správnymi parametrami a v správnom poradí aplikácie podľa toho, čo je našim cieľom,
a teda potenciálne, čo sme v jeho prospech ochotní obetovať - napríklad realistickosť
obrazu. Mnohé zo zlepšení, ktoré sme dosiahli, by sa nemuseli javiť ako zlepšenia z hľa-
diska umeleckého dojmu a odrážania reality čo najbližšej percepcii ľudským zrakom,
aké sa snažíme dosiahnuť pri natáčaní videí na vlastné účely alebo v kinematografii.
Ide o zlepšenia cieliace na zvýraznenie informácie pre účely identifikácie osôb, objektov
a činností v sledovanom priestore. To je totiž úloha bezpečnostných kamier. Netúžime
po realistickej tme ani plynulosti obrazu na úkor informácie o obsahu priestoru. Nezna-
mená to ale ani to, že úplne ignorujeme rušivé efekty aplikácie algoritmov, keďže ich
koncovým respondentom je najčastejšie človek, ktorý musí z obrazu dané informácie
komfortne prijímať, a premietnuť si ich do realistického mentálneho obrazu kontextu
scény. V niektorých prípadoch nakoniec dôjdeme k zisteniu, najmä za dobrých svetel-
ných podmienok a pri kvalitnej kamerovej aparatúre, že najlepší obraz je z pôvodného
videa, a akékoľvek z uvažovaných algoritmov sú kontraproduktívne. V zmysluplne veľ-
kej časti prípadov je to však opačne, a došlo aspoň k malému zlepšeniu kvality záberov,
ktoré môže byť rozhodujúce pri potvrdení či vyvrátení dopytovaných skutočností zdo-
kumentovaných videom. Pozrime sa teda na konkrétne ukážky...

3.1 Identifikácia osoby za dobrých svetelných pod-

mienok

Za denného svetla, prípadne v kompletne umelo osvetlenom priestore, obvykle zábery
scény neobsahujú miesta, ktoré by vyžadovali algoritmické pozdvihnutie informácie.
Kontrast medzi jednotlivými objektmi a črtami je dostatočný, ako vidíme na obrázku
3.1, kde sme porovnávali originálne video s ekvalizáciou histogramu a adaptívnou ekva-
lizáciou histogramu v dvoch rôznych nastaveniach, a síce došlo k prisvieteniu tienistých
miest, ako napríklad pri stene prízemia budovy napravo, ale je otázne, či toto zlepše-
nie bolo nutné a stojí nám za zhoršenie celkovej prehľadnosti neprirodzene pôsobiacich
záberov. Taktiež na tvári autora tejto práce v popredí záberu je vidno, že zvýšenie kon-
trastu neprinieslo obohatenie vo veci vnímaného detailu, keďže ten už bol dostatočný.
Demonštrovali sme však, že dokážeme eliminovať vplyv tieňov v scéne bez kompromi-
tácie informácie, takže pre isté prostredia môže byť ekvalizácia histogramu prínosná.

K zvýrazneniu detailu môže prispieť zaostrovanie, ako môžeme vidieť na obrázku
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Obr. 3.1: Vľavo hore: originálny záber, vpravo hore: ekvalizácia histogramu (v YCbCr
formáte), vľavo dole: adaptívna ekvalizácia histogramu s okolím 8 pixelov a jeho limi-
tom kontrastu 40, vpravo dole: adaptívna ekvalizácia histogramu s okolím 4 pixelov a
jeho limitom kontrastu 20

3.2. Za jemnejšiu formu zaostrovania môžeme považovať aplikáciu odčítania obrazu
rozmazaného gaussovským filtrom, v našom prípade berieme 1.5 násobok hodnoty pi-
xelov v pôvodnom obraze a odpočítame 0.5 násobok hodnoty v rozmazanom obraze s
gaussovským filtrom rozmerov 3 × 3. Agresívnejší účinok, ak je preferovaný, dosiah-
neme aplikáciou hranového filtra, v našom prípade v podobe [[0, -1, 0], [-1, 5, -1], [0, -1,
0]]. Na potlačenie rušivého prílišného zvýraznenia štruktúr v okolí bez znehodnotenia
unikátneho detailu (ako na ľudských tvárach, je efektívne pred zaostrením hranovým
filtrom najprv aplikovať odstránenie šumu nelokálnym priemerovaním. Toto sa javí ako
najlepšia možnosť zvýraznenia detailov za denného svetla, avšak jej nevýhodou je, že
takéto "bezstratové"(vzhľadom na podstatný detail) odstraňovanie šumu je pomalý
proces, a teda nie je aplikovateľné v reálnom čase, len retrospektívne. Kým aplikácia
hranového filtra na jeden záber o veľkosti 100 × 100 pixelov (výsek, no škálovanie
je lineárne) zabrala len približne 150-200 µs, čiže 0,015 - 0,02 µs/px, a zaostrovanie
odčítaním rozmazaného obrazu (tiež s lineárnym škálovaním) 200-300 µs, čiže 0,02 -
0,03 µs/px, takže nie je problém ich aplikovať pri frekvencii živého prenosu 30 alebo aj
viac snímok za sekundu, odstraňovanie šumu nelokálnym priemerovaním si vyžiadalo
zhruba 345000 µs aj na takomto malom výseku, čiže 34 µs/px. Je možné ho bez citeľnej
straty kvality zrýchliť znížením počtu okolitých záberov, v ktorých hľadáme referenčné
výseky pre priemerovanie (tu sme využívali 2 zábery pred a 2 po), no toto zrýchlenie
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zodpovedá počtu prehľadávaných záberov, a teda nedokážeme dosiahnuť hodnotu pod
6 µs/px.

Obr. 3.2: Vľavo hore: originálny záber, vpravo hore: zaostrenie odčítaním rozmaza-
ného obrazu, vľavo dole: zaostrenie hranovým filtrom, vpravo dole: odstránenie šumu
a následné zaostrenie hranovým filtrom

Ďalšie zlepšenie detailu dosiahneme použitím predtrénovaných neurónových sietí
na zvýšenie rozlíšenia. Porovnaniu implementovaných modelov sa budeme venovať v
ďalších podkapitolách, no ukážku práce najkvalitnejšej, no aj časovo najnáročnejšej z
nich - EDSR, môžeme vidieť na obrázkoch 3.3, kde kombinujeme zaostrovanie a EDSR,
a 3.4, kde ešte pridávame ekvalizácie histogramu. Je nutné podotknúť, že narozdiel od
predchádzajúcej ukážky, originálny záber tu nie je bikubicky interpólovaný (je inter-
pólovaný metódou najbližšieho suseda), aby sme zdôraznili dotvorenie pixelov EDSR
pri 4-násobnom zvýšení rozlíšenia. Za kombinácie metód s najpriaznivejším efektom



3.2. IDENTIFIKÁCIA OSOBY ZA NEPRIAZNIVÝCH SVETELNÝCH PODMIENOK35

môžeme označiť:

• zaostrenie hranovým filtrom a následné zvýšenie rolíšenia EDSR

• zaostrenie odčítaním rozmazaného obrazu, následné zvýšenie rolíšenia EDSR a
ekvalizácia histogramu na záver

Rýchlosť nasadenia neurónových sietí bude analyzovaná ďalej v práci, je však nutné
zdôrazniť, že žiaden z implementovaných modelov nie je dostatočne rýchly na nasadenie
v reálnom čase, naopak všetky implementované kombinácie zaostrovania a ekvalizácii
histogramov sú, minimálne pre videá do veľkosti 1280 × 720 pixelov.

3.2 Identifikácia osoby za nepriaznivých svetelných

podmienok

Identifikáciu osoby v tme sme testovali:

• Bez akejkoľvek pomoci v spektre vlnovej dĺžky mimo viditeľného svetla.

• Na záberoch z kamery Hikvision s infračerveným prisvecovaním.

• S využitím termovízie k detekcii pohybujúcej sa osoby.

Na videu Annke_RGB_dark sme otestovali 34 kombinácii algoritmov, hlavne ale na
výreze o veľkosti 400 × 200 pixelov, zachytávajúcom autora práce v tmavej časti scény
preskakujúceho zábradlie a otočiaceho sa tvárou do kamery. Pri ekvalizácii histogramu,
sme narazili na problém zmienený v podkapitole 2.4, kedy tvár osoby (a na videu k tomu
biele tričko) predstavujú len malý zlomok pixelov scény, no zároveň sú najsvetlejšími
časťami scény. Ekvalizácia histogramu ich pixely potom zleje do menšieho rozpätia
intenzít, aby dosiahla zlepšenie separácie intenzít v tmavej väčšine scény. K eliminácii
tohto problému by mala viesť adaptívna ekvalizácia histogramu, ktorá zvyšuje kontrast
na lokálnej báze. Problémom pri objektoch v takto nízkom rozlíšení sú veľmi silné
artefakty, ktoré ňou vziknú a rozbijú akúsi integritu a plynulosť obrazu. Ani jeden z
implementovaných spôsobov ekvalizácií histogramu tak nie je vhodný v častom scenári,
kedy sa o čosi svetlejšia osoba pohybuje v tmavom priestore v strednej vzdialenosti od
kamery, ako je vidieť na ukážke 3.5, kde sme ekvalizácie nasadili po odstránení šumu a
v kombinácii s oboma metódami zaostrovania.

Pri zvyšovaní rozlíšenia tohto výrezu si porovnáme schopnosti a časovú náročnosť
všetkých implementovaných modelov neurónových sietí: EDSR, ESPCN, FSRCNN a
LapSRN, a to pri 2-násobnom zväčšení (na inom videu si ich porovnáme aj pri 4-
násobnom). Ako vidíme na zábere 3.6, rozdiely sú len ťažko badateľné, minimálne a v
podstate zanedbateľné.
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Obr. 3.3: Vľavo hore: originálny záber v pôvodnom rozlíšení, vpravo hore: 4-násobné
zvýšenie rolíšenia EDSR, vľavo dole: zaostrenie hranovým filtrom a následné 4-násobné
zvýšenie rolíšenia EDSR, vpravo dole: zaostrenie odčítaním rozmazaného obrazu a
následné 4-násobné zvýšenie rolíšenia EDSR

Zanedbateľnými ale nie sú rozdiely v časovej náročnosti použitia jednotlivých mo-
delov - naopak - sú značné. Nasadenie EDSR - modelu, ktorý sa nám vo väčšine aplikácií
ukázal ako najschopnejší, no len s minimálnym, často zanedbateľným, no stále niekedy
potenciálne rozhodujúcim rozdielom - trvalo len na spomínaný výsek o rozmeroch 400
× 200 pixelov v priemere 18835037 µs na každú snímku, teda 235 µs/px. Použitie tohto
modelu je možné len retrospektívne a pri opodstatnených prípadoch. Pre predstavu,
na zvýšenie rozlíšenia 135 snímok tohto podobrazu, teda 4 a pol sekundy videa, algo-
ritmus potreboval 2543 sekúnd. Na rovnakom úseku videa to zabralo modelu ESPCN
8,85s, teda 65555 µs na záber a 0,82 µs/px. V prípade FSRCNN to bolo 19,57s pre
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Obr. 3.4: Vľavo hore: originálny záber v pôvodnom rozlíšení, vpravo hore: zaostrenie
hranovým filtrom, následné 4-násobné zvýšenie rolíšenia EDSR a ekvalizácia histo-
gramu na záver, vľavo dole: zaostrenie odčítaním rozmazaného obrazu, následné 4-
násobné zvýšenie rolíšenia EDSR a ekvalizácia histogramu na záver, vpravo dole: zaos-
trenie odčítaním rozmazaného obrazu, následné 4-násobné zvýšenie rolíšenia EDSR a
adaptívna ekvalizácia histogramu na záver s okolím 4 pixelov a jeho limitom kontrastu
20
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Obr. 3.5: Vľavo hore: odstránenie šumu, následné zaostrenie hranovým filtrom a ekvali-
zácia histogramu na záver, vpravo hore: ostránenie šumu, následné zaostrenie hranovým
filtrom a adaptívna ekvalizácia histogramu na záver s okolím 4 pixelov a jeho limitom
kontrastu 20, vľavo dole: ostránenie šumu, následné zaostrenie odčítaním rozmazaného
obrazu a ekvalizácia histogramu na záver, vpravo dole: ostránenie šumu, následné za-
ostrenie odčítaním rozmazaného obrazu a adaptívna ekvalizácia histogramu na záver s
okolím 4 pixelov a jeho limitom kontrastu 20

Obr. 3.6: Vľavo hore: EDSR, vpravo hore: ESPCN, vľavo dole: FSRCNN, vpravo dole:
LapSRN
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predspracovanie EDSR ESPCN FSRCNN LapSRN
žiadne 235.44 0.82 1.81 8.26
zaostrenie hranovým filtrom 210.19 0.66 1.84 7.56
odstránenie šumu a zaostrenie
hranovým filtrom

184.99 0.68 1.59 7.52

zaostrenie odčítaním
rozmazaného obrazu

187.21 0.66 1.68 7.56

odstránenie šumu a zaostrenie
odčítaním rozmazaného obrazu

189.09 0.68 1.54 7.58

Tabuľka 3.1: Porovnanie časov implementovaných modelov pri zdvojnásobení rozlíšenia
v µs/px

celý výsek videa, čiže 144962 µs na záber a 1,81 µs/px . Použitie LapSRN nás vyšlo na
89,28s celkovo, 661333 µs na záber a 8,26 µs/px. Okrem toho sme zvýšenie rozlíšenia
v ďalších testoch kombinovali aj s predspracovaním, kde sme vyskúšali obe implemen-
tované metódy zaostrovania obrazu, pričom každú z nich aj samostatne, aj na obraze
zbavenom šumu (pred nasadením neurónovej siete). Porovnanie rýchlostí jednotlivých
modelov v závislostu od predspracovania sa nachádza v tabuľke 3.1.

Keďže výsledky aplikácie jednotlivých modelov sú si v tomto scenári prakticky na
nerozoznanie blízke, budeme porovnávať aplikácie ďalších algoritmov na toto video v
kombinácii s najrýchlejším z nich - ESPCN, a druhým najrýchlejším - FSRCNN. Pre-
skúmali sme aj kombinácie s ďalšími, no trendy vzťahujúce sa na výsledky kombinácii s
ďalšími metódami sú medzi nimi rovnaké. Ako vidíme na obrázku 3.7, predspracovanie
zaostrovaním hranovým filtrom vytvára nezanedbateľné artefakty aj na tvári osoby, a
to aj v kombinácii s odšumeným obrazom. Zaostrovanie odčítaním rozmazaného obrazu
je teda preferované.

Odstránenie šumu sa tu nepreukázalo dostatočne citeľne prínosné na obhájenie jeho
vysokej časovej náročnosti. Aj ak používame k hľadaniu refrenčných výsekov len aktu-
álny záber, čas potrebný na túto operáciu vyše 23-násobne prevyšuje čas trvania videa,
hoci ju aplikujeme len na jeho výrez o veľkosti 400 × 200 pixelov. Jej náročnosť tu je
teda na úrovni nie menšej než 0,7 sekundy na záber, alebo 9,68 µs/px. Preto ju v tomto
scenári nebudeme ďalej aplikovať. Opačné poradie aplikácie zaostrovania, kedy obraz
zaostríme až po zvýšení rozlíšenia, vzniknuté artefakty do solídnej miery eliminuje, ako
je vidieť na ukážke 3.8, a prezentuje nám tak ponuku najlepších postupností zlepšení,
aké dokážeme na tomto videu pomocou testovaných algoritmov dosiahnuť.

Ďalšie videá spadajúce do scenára osoby pohybujúcej sa v tme, sú zaobstarané ka-
merou Hikvision s infračerveným prisvecovaním a originálne sú v šedotónovej podobe.
Našim prvým krokom teda bude ich rekolorizácia pomocou neurónovej siete z projektu
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Obr. 3.7: Vľavo hore: zaostrenie hranovým filtrom + ESPCN, vpravo hore: odstránenie
šumu + zaostrenie hranovým filtrom + ESPCN, vľavo dole: zaostrenie odčítaním roz-
mazaného obrazu + ESPCN, vpravo dole: odstránenie šumu + zaostrenie odčítaním
rozmazaného obrazu + ESPCN

Obr. 3.8: Vľavo hore: zaostrenie hranovým filtrom + FSRCNN, vpravo hore: zaostre-
nie odčítaním rozmazaného obrazu + FSRCNN, vľavo dole: FSRCNN + zaostrenie
hranovým filtrom, vpravo dole: FSRCNN + zaostrenie odčítaním rozmazaného obrazu



3.2. IDENTIFIKÁCIA OSOBY ZA NEPRIAZNIVÝCH SVETELNÝCH PODMIENOK41

Obr. 3.9: Vľavo hore: originálny záznam, vpravo hore: rekolorizácia, vľavo dole: reko-
lorizácia + zaostrenie hranovým filtrom, vpravo dole: rekolorizácia + zaostrenie hra-
novým filtrom + ekvalizácia histogramu

Deoldify. Tá sa ukázala ako spoľahlivá a produkuje výsledky s odchýlkou od reálnych
farieb dostatočne malou na to, aby nešlo len o uveriteľné, ale aj o realistické dofarbenie
konkrétnej scény, no len ak má na záberoch zmysluplné referenčné objekty. Farby pô-
sobia trochu nenaturálnym dojmom, avšak to je zapríčinené aj tým, že nejde o klasický
šedotónový obraz, ale obohatený o informáciu z infračerveného spektra. Na ukážke
3.9 vidíme výsledok aplikácie rekolorizácie, a efekt následnej aplikácie zaostrovania,
prípadne aj ekvalizácie histogramu. Prostredie, v akom je záznam vyhotovovaný, ob-
sahujúce ihličnatú zeleň tvoriacu vysokú frekvenciu striedania pixelov vysokej a nízkej
intenzity v kombinácii so zdrojmi svetla, je značne nepriaznivé pre aplikáciu ekvalizácie
histogramu.

Na výstrih z videa o rozmeroch 300 × 240 pixelov, kde autor práce podišiel bližšie
ku kamere, sme následne aplikovali 4-násobné zvýšenie rozlíšenia pomocou všetkých
implementovaných modelov neurónových sietí na to zameraných. Vzájomné rozdiely
medzi nimi boli opäť len veľmi ťažko badateľné, ak vôbec. Toto vidieť na ukážke 3.10.
Subjektívne sa nám však ako najlepší javil výsledok modelu LapSRN, keďže nevniesol
do obrazu badateľné artefakty, a zároveň zobrazuje jednotlivé objekty na scéne ostro
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Obr. 3.10: Na rekolorizáciu nadväzujúce - vľavo hore: EDSR, vpravo hore: ESPCN,
vľavo dole: FSRCNN, vpravo dole: LapSRN

a kontinuálne, preto pri ďalších snahách o zlepšenie týchto snímok zúžitkujeme tento
algoritmus.

V porovnaní 3.11 vidíme, že najlepší výsledok, ostrý, kontinuálny a bez artefak-
tov, sme dosiahli záverečnou aplikáciou zaostrovania hranovým filtrom na rekolorizo-
vané video zväčšené modelom LapSRN (lepší, než pri inej forme alebo poradí aplikácie
zaostrovania). Oproti aplikácii zaostrovania hranovým filtrom na video v pôvodnom
rozlíšení v ukážke 3.9 je tu vidieť výrazné zlepšnie, keď sú vďaka zväčšeniu rozlíšenia
rozostupy medzi hranami väčšie.

Pre názornosť si môžeme ukázať neúspech odstraňovania rozmazania, ktoré malo
slúžiť na predspracovanie záberov pre neurónové siete pred zväčšením rozlíšenia. S
ním obvykle automaticky kombinujeme ekvalizáciu histogramu, keďže pri procese, ak
nemá vniesť do obrazu veľkorozmerné artefakty, dochádza ku komprimácii intenzít jasu
do spektra nízkych hodnôt. Napriek tomu, že táto metóda mala prínosný účinok na
testovacích rozmazaných záberoch nepochádzajúcich z naších videí, zjavne je funkčná
len v úzkom spektre prípadov. Naše rekolorizované video pri aplikácii po jednotlivých
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Obr. 3.11: Na rekolorizáciu nadväzujúce - Vľavo hore: zaostrenie hranovým filtrom +
LapSRN, vpravo hore: zaostenie odčítaním rozmazaného obrazu + LapSRN, vľavo dole:
LapSRN + zaostrenie hranovým filtrom, vpravo dole: LapSRN + zaostrenie odčítaním
rozmazaného obrazu
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Obr. 3.12: Rekolorizácia + odstránenie rozmazania v záberoch + ekvalizácia histogramu

kanáloch skoro zbavila farby, no hlave ho úplne dezintegruje, ako vidieť na zábere
3.12. Rozmazanie vyskytujúce sa vo videách z bezpečnostných kamier, ktoré bývajú
uchytené stabilne a vzdialene od pozorovaných objektov, však nebýva signifikantným
problémom, a teda sa ním nebudeme ďalej zaoberať, a ani sme tu neskúšali efekt tohto
predspracovania na následné zvyšovanie rozlíšenia neurónovými sieťami.

V priestore bez akéhokoľvek iného než ambientného nočného osvetlenia, mimo
zóny pouličných lámp - praktickú aplikáciu si môžeme predstaviť napríklad u zadného
vchodu do nejakej prevádzky - sme zistili, že infračervené prisvecovanie kamery Hik-
vision žiaľ nie je ani z realtívne blízkej vzdialenosti postačujúce, ak by sme chceli
identifikovať tvár osoby. Najprv sme sa pokúsili aplikovať rekolorizáciu na pôvodné, aj
šumu zbavené video, ktorá trvala v priemere skoro 3 sekundy na záber o veľkosti 640
× 360 pixelov, konkrétne pri videu bez predspracovania 12,5 µs/px a s predspracova-
ním odstránením šumu 11,05 µs/px. Keďže video však neposkytuje prakticky žiadne
objekty, ktorým by bola pomerne jednoznačne priraditeľná farba, ako boli na videu
Hikvision_dark_distant stromy či pouličné osvetlenie, neurónová sieť je tu bezradná a
oba pokusy o kolorizáciu sa vyznačujú striedaním farebných odtieňov videa porovnateľ-
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Obr. 3.13: Farebne nesprávny efekt rekolorizácie videa bez referenčných objektov. Zau-
jímavým by mohlo byť, že vždy práve vtedy, keď autor práce na zázname podliezol,
alebo inak interagoval s rámovou konštrukciou sušiaka - tu vidieť - záznam náhle prešiel
do inak neprítomného modrého sfarbenia.

ným s umiestnením disko gule neďaleko sledovaného priestoru, a nesprávnym odhadom
farby oblečenia, viď ukážka 3.13.

Ďalej sa teda radšej pokúsime zlepšiť šedotónové video. Pri tom sa nám neosvedčili
ekvalizácie histogramu, osvedčilo sa však zaostrovanie hranovým filtrom, a to buď
ako jediná aplikovaná metóda, ak nám nevadí šum v prostredí, majúc tiež značnú
výhodu, že ju vieme nasadiť na živý prenos v reálnom čase, alebo po odstránení šumu
nelokálnym priemerovaním, ak preferujeme uhladenejší obraz (no stále nechceme prísť
o informáciu). Porovnanie s originálom a zaostrovaním odčítaním rozmazaného obrazu
je na obrázku 3.14.

Prvoradé, ak by sme chceli osobu identifikovať, je ju vôbec na zábere zahliadnuť.
Ak je napríklad na druhom konci prenosu obrazu z kamery strážnik či vrátnik, mohlo
by mu byť nápomcné byť upozornený na pohyb človeka v sledovanom priestore, keby
sa tento vyskytol v tmavej časti scény a prípadne by túto skutočnosť využil voľbou
tmavého šatstva či dokonca prekrytia tváre. Akákoľvek snaha farebne splynúť s tem-
ným pozadím by mu bola zbytočná, ak ho dokážeme vidieť v infračervenom spektre,
vďaka teplu, ktoré vyžaruje. Aby ale strážnik nemusel sledovať dve kamery pre jednu
scénu zároveň, chceli by sme informáciu o pohybujúcej sa siluete teplejšieho objektu
premietnuť na hlavný RGB záznam. Metódu na toto slúžiacu sme implementovali, s
tým, že strážnik na začiatku vyznačí dva body reprezentujúce rovnaké miesto na RGB
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Obr. 3.14: Vľavo hore: pôvodný záber, vpravo hore: zaostenie odčítaním rozmazaného
obrazu, vľavo dole: zaostrenie hranovým filtrom, vpravo dole: odstránenie šumu nelo-
kálnym primerovaním + zaostrenie hranovým filtrom

aj infračervenom zábere, a program následne párovanie medzi týmito bodmi využije,
aby vypočítal transformáciu medzi scénami oboch spektier, a zvýrazňuje siluetu pohy-
bujúcich sa objektov v RGB spektre na základe informácii z infračerveného spektra.
Ukážku napárovaného výseku je možné vidieť na obrázku 3.15, pri testovaní ešte za
dňa, kvôli názornosti. Ukážku následného zvýraznenia pohybujúcej sa osoby možno
vidieť na obrázku 3.16.

3.3 Identifikácia vozidla

Identifikovať vozidlo sa môžeme snažiť jednoznačne - pomocou evidenčného čísla, alebo
typovo - model, ročník, farba, atď - čo je podstatne jednoduchšie. Pre účely porovnania
algoritmov sme z videa american_crossroad_traffic spravili výrez špecificky zameraný
na autá odchádzajúce od kamery v ich najbližšej pozícii k nej, kde máme najlepšiu
šancu identifikovať aj štátnu poznávaciu značku. Rozhodli sme sa tu opäť porovnať
predtrénované neurónové siete v záujme zistenia, či sa líšia ich schopnosti v prípade re-
konštrukcie textu v nízkom rozlíšení. Toto porovnanie bez akéhokoľvek predspracovania
môžeme vidieť na ukážke 3.17. Podľa pohľadu na emblém značky, označenie modelu
v pravej hornej časti kufra, a disk kolesa, vidíme, že model EDSR je o čosi schop-
nejší, než ostatné. Zároveň je ale aj najpomalší. Otázne je, či nám záleží na rýchlosti,
ak žiadnu, ani najrýchlejšiu sieť - čiže ESPCN - nedokážeme nasadiť v reálnom čase.
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Obr. 3.15: Ukážka napárovania oblasti záberu infračervenej kamery do záberu RGB
kamery na základe voľby dvoch referenčných bodov používateľom

Obr. 3.16: Približné označenie siluety pohybujúcej sa osoby získané z in-
fračerveného záberu automaticky vygenerované nami zostrojenou metódou
track_movement_thermo_to_rgb.
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Obr. 3.17: Vľavo hore: EDSR, vpravo hore: ESPCN, vľavo dole: FSRCNN, vpravo dole:
LapSRN

Keďže však časový rozdiel medzi týmito dvoma algoritmami je zhruba 200-násobný,
stále považujeme za zaujímavé si ich detailnejšie porovnať v tomto scenári, bohatom
na detail.

Ešte raz sme dali pri predspracovaní šancu algorimtu odstraňujúcemu rozmazanie,
no skutočne, ako je vidieť na zábere 3.18, ide práveže o veľmi kontraproduktívny proces
v našich prípadoch.

Obr. 3.18: Hore: odstránenie rozmazania + ekvalizácia histogramu (nutná po odstraňo-
vaní rozmazania, keďže obraz veľmi stmavne) + EDSR, dole: odstránenie rozmazania
+ ekvalizácia histogramu + ESPCN
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Obr. 3.19: Vľavo hore: zaostrovanie hranovým filtrom + EDSR, vpravo hore: zaostro-
vanie hranovým filtrom + ESPCN, vľavo dole: zaostrovanie odčítaním rozmazaného
obrazu + EDSR, vpravo dole: zaostrovanie odčítaním rozmazaného obrazu + ESPCN

EDSR a ESPCN sme si porovnali nasadené na predspracované obrazy zaostrovaním
hranovým filtrom, aj odčítaním rozmazaného obrazu - viď záber 3.19, ako aj s tým,
že ešte pred aplikáciou zaostrovania sme aplikovali odstraňovanie šumu nelokálnym
priemerovaním - viď záber 3.20. Ak obraz preostríme, EDSR sa ukazuje ako dvojsečná
zbraň a vie si domyslieť aj to, čo na zábere nie je, avšak tak, že zdegraduje pôvodnú
informáciu. Dalo by sa povedať, že oproti ESPCN má "viac fantázie", avšak často
zas vďaka tomu skutočne uhádne detail, ktorý mu štruktúra pixelov obrazu v nižšom
rozlíšení napovedá, presnejšie. Výsledky necháme čitateľov posúdiť samých.

Na záver tohto scenáru by bolo vhodné si porovnať zlepšené obrazy s pôvodnými.
Porovnáme EDSR aj ESPCN, s oboma metódami zaostrovania, no bez odstraňovania
šumu, keďže ide o výpočtovo zdĺhavú operáciu (bezstratovo nelokálnym priemerova-
ním), ktorá nepriniesla presvedčivé zlepšenie v dobre osvetlenom prostredí. Do porov-
nania zaradíme aj bikubickú interpoláciu. Ukážky sú na obrázkoch 3.21 a 3.22.

3.4 Prostredia s rozmanitou mierou osvetlenia

Ak je kamera vystavená priamemu slnku, obzvlášť pri jeho východe a západe, dyna-
mický rozsah v scéne predstavuje veľkú výzvu pre bezpečnostné kamery. Veľmi silný
prípad takejto situácie máme na zábere dutch_street_sunset. Tu sa nám budú veľmi
hodiť ekvalizácie histogramov. Adaptívne ekvalizácie sú efektnejšie, no zanechávajú
značné artefakty v podobe akéhosi mozajkovania obrazu. Čím väčší prípustný limit
rozdielu kontrastu zvolíme (tento je nutné správne zladiť s veľkosťou okolia - my po-
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Obr. 3.20: Vľavo hore: odstránenie šumu nelokálnym priemerovaním + zaostrovanie
hranovým filtrom + EDSR, vpravo hore: odstránenie šumu nelokálnym priemerovaním
+ zaostrovanie hranovým filtrom + ESPCN, vľavo dole: odstránenie šumu nelokálnym
priemerovaním + zaostrovanie odčítaním rozmazaného obrazu + EDSR, vpravo dole:
odstránenie šumu nelokálnym priemerovaním + zaostrovanie odčítaním rozmazaného
obrazu + ESPCN

Obr. 3.21: Vľavo hore: záber v pôvodnom rozlíšení, vpravo hore: štvornásobné zväčšenie
bikubickou interpoláciou, vľavo dole: zaostrovanie hranovým filtrom + EDSR, vpravo
dole: zaostrovanie odčítaním rozmazaného obrazu + EDSR
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Obr. 3.22: Vľavo hore: záber v pôvodnom rozlíšení, vpravo hore: štvornásobné zväčšenie
bikubickou interpoláciou, vľavo dole: zaostrovanie hranovým filtrom + ESPCN, vpravo
dole: zaostrovanie odčítaním rozmazaného obrazu + ESPCN

užívame okolie veľkosti 4 s limitom 20 pre hladší efekt, a okolie veľkosti 8 s limitom
40 pre radikálnejšie zvýraznenie), tým lepší kontrast získame medzi inak nevidenými
podobrazmi - viď obloha na ukážke 3.23, ktorá demonštruje aj spomínané artefakty, a
schopnosti vytiahnuť tiene a kompenzovať presvetlenie v obraze. Opäť tu platí, že čím
výraznejšie zlepšenie čitateľnosti informácií v obraze si prajeme, tým menej naturálne
bude záber pôsobiť. V tomto prípade si však myslíme, že to určite stojí za to (pri bez-
pečnostných kamerách), keďže na pôvodnom videu vieme ledva rozlíšiť povrch a tvar
cesty od okolia, a len ťažko by sme tam chceli spozorovať nejakú osobu.

Vzhľadom na dostatočne prirodzený vzhľad obrazu bez artefaktov, ktorý zároveň
poskytuje vizuálnu informáciu o dianí v ulici, sme si zvolili klasickú globálnu ekvalizáciu
histogramu (aplikovanú vo formáte YCrCb), a osvedčilo sa nám ju nasadiť na odšumený
obraz (nelokálnym priemerovaním) a kombinovať ju s niektorou z metód zaostrovania.
Zaostrovanie hranovým filtrom je pri tom agresívnejšie, kým zaostrovanie odčítaním
rozmazaného obrazu tu produkuje len ťažko rozoznateľné zlepšenie, avšak zachováva
hladký charakter obrazu, viď ukážka 3.24.

Pozrime sa teraz na trochu miernejšiu situáciu, kde stále čelíme oblohe presvetlenej
zapadajúcim slnkom, avšak nie slnku samotnému. Kamera v scéne german_marketplace_eve
je síce vzdialenejšia od objektov, ktoré by sme mohli chcieť identifikovať, než dáva zmy-
sel pre bezpečnostné kamery, avšak na zázname je veľa prvkov, na zlepšenie detailu
ktorých sa môžeme zamerať. Začali sme s ekvalizáciami histogramu, v záujme vytia-
hnutia štruktúr na tmavých miestach na zábere. V prípade tohto záznamu, kedy je
obraz zašumenejší, než napríklad v predošlom videu dutch_street_sunset, hoci - čo je



52 KAPITOLA 3. VÝSLEDKY A VYHODNOTENIE PRÁCE

Obr. 3.23: Vľavo hore: pôvodný záber, vpravo hore: ekvalizácia histogramu, vľavo dole:
adaptívna ekvalizácia histogramu s okolím 8 pixelov a jeho limitom kontrastu 40, vpravo
dole: adaptívna ekvalizácia histogramu s okolím 4 pixelov a jeho limitom kontrastu 20

Obr. 3.24: Vľavo hore: pôvodný záber, vpravo hore: odstránenie šumu nelokálnym
priemerovaním + ekvalizácia histogramu, vľavo dole: odstránenie šumu nelokálnym
priemerovaním + ekvalizácia histogramu + zaostrenie hranovým filtrom , vpravo dole:
dstránenie šumu nelokálnym priemerovaním + ekvalizácia histogramu + zaostrenie
odčítaním rozmazaného obrazu
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Obr. 3.25: Vľavo hore: pôvodný záber, vpravo hore: ekvalizácia histogramu, vľavo dole:
adaptívna ekvalizácia histogramu s okolím 8 pixelov a jeho limitom kontrastu 40, vpravo
dole: adaptívna ekvalizácia histogramu s okolím 4 pixelov a jeho limitom kontrastu 20

dôležité uvedomenie - sa tak na prvý pohľad vôbec nemusí zdať, sa veľmi osvedčilo
pre potlačenie artefaktov v dôsledku ekvalizácii histogramov, nasadiť najprv na obraz
odstraňovanie šumu nelokálnym priemerovaním. Pozitívny dopad tohto predspracova-
nia je vidieť porovnaním medzi ukážkou 3.25 a ukážkou a 3.26, na ktorej síce došlo pri
odstránení šumu k miernej degradácii detailu opakujúcich sa štruktúr, avšak z princípu
fungovania algoritmu nelokálneho priemerovania ostali unikátne detaily zachované, a
to je to, čo nás pri bezpečnostných kamerách zaujíma - detaily jedinečných postáv, vo-
zidiel, prípadne iných objektov, a sme ochotní obetovať detail štruktúry častí budovy,
alebo, na našom zázname, napríklad žeriavu.

Opäť sa nám osvedčilo tieto algoritmy kombinovať s niektorou z implementovaných
metód zaostrovania. Tiež sme odpozorovali, že je prínosnejšie aplikovať zaostrovanie
v poradí ešte pred ekvalizáciou histogramu. Kvôli prítomnosti artefaktov pri adaptív-
nej ekvalizácii histogramu považujeme aj tu globálnu ekvalizáciu v YCrCb formáte za
vhodnejšiu. Jej najúspešnejšie kombinácie s algoritmami zaostrovania vidíme na zábere
3.27. Čitateľovi odporúčame zamerať sa na cyklistu vpravo dole a stánky reštaurácii
naľavo. Ak chceme zlepšenie aplikovať v reálnom čase, nemôžeme si dovoliť zbavova-
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Obr. 3.26: Vľavo hore: pôvodný záber, vpravo hore: odstránenie šumu nelokálnym
priemerovaním, vľavo dole: odstrénenie šumu nelokálnym priemerovaním + ekvalizácia
histogramu, vpravo dole: odstrénenie šumu nelokálnym priemerovaním + adaptívna
ekvalizácia histogramu
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Obr. 3.27: Vľavo hore: zaostrenie odčítaním rozmazaného obrazu, vpravo hore: od-
stránenie šumu nelokálnym priemerovaním + zaostrenie hranovým filtrom, vľavo dole:
zaostrenie odčítaním rozmazaného obrazu + ekvalizácia histogramu, vpravo dole: od-
stránenie šumu nelokálnym priemerovaním + zaostrenie hranovým filtrom + ekvalizácia
histogramu

nie obrazu šumu nelokálnym priemerovaním. Vtedy je vhodnejšie zvoliť zaostrovanie
odčítaním rozmazaného obrazu, než hranovým filtrom. Pre porovnanie uvádzame aj
kombináciu tých istých zaostrovacích a odšumovacieho algoritmu s adaptívnou ekvali-
záciou v ukážke 3.28.

3.5 Poveternostné vplyvy

Kamery umiestnené v exteriéri budú vo väčšine lokalít občas čeliť podmienkam ako
je hmla či dážď. Na video strba_snow_fog sme nasadili algoritmy v snahe nielen
zlepšiť detail v obraze, pri ktorom sme sa najviac sústredili na konštrukciu lanoviek v
pozadí, keďže ide o asi najjednoduchšie a zároveň najsmerodajnejšie posúditeľný detail,
ale aj na potlačenie efektu hmly v scéne. Vyskúšali sme množstvo rôznych nastavení
adaptívnej ekvalizácie histogramu, a práve poznatky z tohto videa nás viedli k tomu, že
vo vyššie zlepšovaných videách sme volili ako primárnu možnosť okolie 4 pixelov a limit
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Obr. 3.28: Vľavo hore: zaostrenie odčítaním rozmazaného obrazu, vpravo hore: od-
stránenie šumu nelokálnym priemerovaním + zaostrenie hranovým filtrom, vľavo dole:
zaostrenie odčítaním rozmazaného obrazu + adaptívna ekvalizácia histogramu, vpravo
dole: odstránenie šumu nelokálnym priemerovaním + zaostrenie hranovým filtrom +
adaptívna ekvalizácia histogramu
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Obr. 3.29: Vľavo hore: zaostrenie hranovým filtrom, vpravo hore: zosvetlenie o hod-
notu 50 (v každej RGB zložke), vľavo dole: zaostrenie hranovým filtrom + zosvetlenie,
vpravo dole: zosvetlenie + zaostrenie hranovým filtrom

rozdielneho kontrastu 20, a ako sekundárnu, agresívnejšiu alternatívu, okolie 8 pixelov
a limit kontrastu 40. Problémom inak zvolených kombinácii a pomerov medzi okolím
a limitom jasu boli ešte výraznejšie artefakty v podobe “mozajkovania” obrazu. Avšak
všetky ekvalizácie histogramu tu zapríčinili skôr degradáciu obrazu. Odskúšali sme
aj potenciálny prínos jednoduchého zosvetlenia obrazu, avšak podľa očakávaní, keďže
aplikáciou zosvetlenia pripočítaním konštanty k intenzite každého pixelu nedochádza
k žiadnemu zvýrazneniu rozdielov medzi jednotlivými intenzitami, práveže na svetlých
miestach dôjde k jeho zániku. Efekt síce na pohľad pôsobí "čistejšie", neprináša však
v prípade bezpečnostných kamier žiaden osoh. Ukážku tohto možno vidieť na obrázku
3.29.

Nakoniec sme došli k tomu, že najprínosnejšie je v tomto prípade použitie len samot-
ného zaostrovania hranovým filtrom. Na ukážke 3.30 toto kombinujeme s ekvalizáciami
histogramu pred alebo po, ale snímku vpravo hore považujeme za lepšiu než tie, ktoré
podstúpili ekvalizácie.

Klip parking bol natočený za dažďa, ten však na kamere prakticky nebadať, a ne-
bude ho badať ani na väčšine bezpečnostných kamier, pokiaľ nepôjde o skutočne hustý
dážď, tak ako máme problém zachytiť dážď na kamere smartfónu. Väčšina bezpeč-
nostných kamier má zároveň predĺženú striešku nad objektívom, ktorá ho chráni pred
dopadom kvapiek. Čo sa teda vôbec mení vplyvom dažďa na záberoch? Nie veľa, no
zároveň jedna vec je kľúčovou a neprekonateľnou prekážkou - dáždniky. Drvivá väč-
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Obr. 3.30: Vľavo hore: pôvodný záber, vpravo hore: zaostrenie hranovým filtrom, vľavo
dole: zaostrenie hranovým filtrom + ekvalizácia histogramu, vpravo dole: + zaostrenie
hranovým filtrom + adaptívna ekvalizácia histogramu

šina exteriérových bezpečnostných kamier je umiestnená vo výške, pri pohľade z ktorej
kupola dáždnika kompletne prekrýva tvár človeka v akejkoľvek vzdialenosti, v kto-
rej by ešte bola rozoznateľná. Toto je prekážka, s ktorou sa nedokážeme vysporiadať.
Druhá vec, čo sa mení oproti tomu, keď je obloha len zatiahnutá oblakmi, je voda na
zemi. Niektoré povrchy môžu vytvárať značné zrkadlenie, keď sú pokryté hoci aj veľmi
plytkou vrstvou vody. V našej doméne to nemá priamočiaru podstatnosť - prakticky
všetky objekty, ktorých prítomnosť v sledovanom priestore nás zaujíma, sa pohybujú
nad povrchom - avšak keď čierny asfalt prestane byť na zázname čiernym, objekty
na ňom nemusia oproti nemu tak vyniknúť, čo by mohlo mierne komplikovať prácu
niektorým algoritmom a degradovať kvalitu ich výsledku, napríklad aj algoritmom slú-
žiacim na automatickú identifikáciu či klasifikáciu objektov, pre ktoré sa v tejto práci
tiež snažíme maximalizovať objem a čistotu výstupnej informácie. Došli sme k záveru,
že na video dostatočne vysokého rozlíšenia za solídnych svetelných podmienok nemá
význam aplikovať ostrenie hranovým filtrom, keďže dôjde k zbytočnému preostreniu,
a ostrenie odčítaním rozmazaného obrazu v zmysluplnej miere zas neprodukuje bada-
teľný rozdiel. Ekvalizácie histogramu sú zas zbytočné, ak ide o takýto dobre no hlavne
uniformne osvetlený priestor, a práveže pôsobia kontraproduktívne, a to jednak zdôraz-
nením lesku vlhkých plôch, a taktiež zhoršením čitateľnosti farby svetlých a tmavých
automobilov, ktorá môže byť v niektorých prípadoch predmetom záujmu. Na ukážke
3.31 vidíme, že veľmi malé zlepšenie oproti originálnemu obrazu môžeme so zaostrením
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Obr. 3.31: Vľavo hore: pôvodný záber, vpravo hore: zaostrenie odčítaním rozmaza-
ného obrazu, vľavo dole: zaostrenie odčítaním rozmazaného obrazu + ekvalizácia his-
togramu, vpravo dole: + zaostrenie odčítaním rozmazaného obrazu + adaptívna ekva-
lizácia histogramu

odčítaním rozmazaného obrazu dosiahnuť, no originálny záznam je dostatočne kvalitný
a nevieme ho vhodnejšie predspracovať, alebo zlepšiť priamo z hľadiska ľudského pozo-
rovateľa. Za povšimnutie stojí kráčajúca osoba vľavo hore s bledými nohavicami, ktorá
na ekvalizovaných záberoch splýva s lesknúcim sa vlhkým asfaltom.

3.6 Prehľad implementovaných metód

Nakoniec ponúkame prehľad všetkých testovaných metód, ich časovej náročnosti, závis-
losti od parametrov nastavených pred alebo pri volaní samotnej metódy, a zhodnotenia
ich vhodnosti, v tabuľke 3.2 a 3.3.
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kategória algoritmus
očakávateľné
µs/px

závislosť od
parametrov

uplatnenie

zvyšovanie
rozlíšenia

bikubická
interpolácia

<0,1 nie

najrýchlejší spôsob
zvýšenia rozlíšenia,
nezaostáva za neur.
sieťami do neakcep-
tovateľnej miery

EDSR 235 nie
najkonštruktívnejšia
a najschopnejšia

ESPCN 0,8 nie

najrýchlejšia
neurónová sieť,
najvhodnejšia, keďže
vo veľkej väčšine
prípadov nezaostáva
ani za EDSR

FSRCNN 1,8 nie
zmysluplne rýchla
alternatíva ESPCN

LapSRN 8,2 nie

časovo
najkonzistentnejšia,
vnáša najmenej
artefaktov

zaostrenie
hranovým
filtrom

<0,1 áno

najefeknejšie pre
zvýraznenie hrán,
vhodné nasadiť po
odstránení šumu
nelok. priemerovaním,
v kombinácii s neur.
sieťami až po ich
nasadení

odčítaním
rozmazaného
obrazu

<0,1 áno

hladší spôsob
zaostrenia, efekt nie
je význačný, no
netvorí artefakty, ne-
potrebuje kombinovať
s odstraňovaním šumu

Tabuľka 3.2: Tabuľka implementovaných metód - 1. časť
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kategória algoritmus
očakávateľné
µs/px

závislosť od
parametrov

uplatnenie

ekvalizácia
histogramu

globálna
v YCrCb
formáte

<0,1 nie

vhodná na kompen-
záciu vysokého dyn.
rozsahu scény,
nadbytočná v dobrých
svetel. podmienkach,
nežiadúca, ak je osoba
presvetlená voči
tmavému pozadiu

adaptívna
v YCrCb
formáte

<0,1 áno

vnáša značné artefakty
- efekt mozajkovania,
efektívna pre vyzdvih-
nutie tmavých miest

zvýšenie
jasu

pripočítaním
konštantnej
hodnoty

<0,1 áno

zvyšuje pocitovú
čitateľnosť záberu ako
takého, no je kontra-
produktívne v zmysle
zvýraznenia vizuálnej
informácie

odstránenie
šumu

nelokálnym
priemerovaním

34 áno

efektné, vhodné
kombinovať so zaost-
rením hran. filtrom,
zachováva detaily
do uspokojivej miery,
výpočtovo náročné

odstránenie
rozmazania

dekonvolúciou
vo frekvenčnom
spektre + nutná
ekvalizácia
histogramu

0,22 áno
v našej doméne
nasadenia zbytočné
a kontraproduktívne

rekolorizácia
neurónovou
sieťou
Deoldify

12 áno

spoľahlivá, ak záber
obsahuje referenčné
objekty, inak nevyspy-
tateľná

detekcia
pohybu

pomocou
IR spektra

<0,01 nie

nápomocné v tmavých
priestoroch, kvalita
závisí od kvality IR
obrazu z kamery

Tabuľka 3.3: Tabuľka implementovaných metód - 2. časť
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Záver

V tejto práci sme preskúmali, implementovali a porovnali možnosti zlepšenia kvality a
čitateľnosti vizuálnej informácie vo videách z bezpečnostných kamier. Výskum v tejto
práci by mal byť priamo nápomocný k integrácii softvérov, ktoré:

• Zvýšia celkovú mieru čitateľnosti priestoru sledovaného ľudským operátorom pro-
stredníctvom systému bezpečnostných kamier v reálnom čase, umožňujúc tak
efektívnejšie alebo včasnejšie predchádzať škodnej či kriminálnej činnosti, či rie-
šiť iné problémy objaviace sa v medziach monitorovanej zóny.

• Zvýraznia doménovo relevantnú vizuálnu informáciu pri retrospektívnom prehlia-
daní a vyšetrovaní záznamu a na ňom (potenciálne) zachyteného kontextu. Aj
ak na základe snímok stále nedokážeme priradiť tvár konkrétnemu človeku (na-
príklad v policajnej databáze), alebo jednoznačne určiť evidenčné číslo vozidla,
pretože unikátnu informáciu nezachytenú vo videu nedokážeme dotvoriť bez rov-
nakej referencie, zlepšenie viditeľnosti čŕt môže potvrdiť či vyvrátiť prítomnosť
nejakej osoby či vozidla na mieste, čo má samo o sebe vysokú výpovednú hodnotu
pre vyšetrovanie spáchanej aktivity.

• Zdôraznia podkladové informácie pre algoritmy rozpoznávajúce objekty v ob-
raze, a zvyšujú tak pravdepodobnosť správnej klasifikácie, čo zvýši spoľahlivosť
automatizovaných procesov v dohľadových systémoch.

Program, ktorý sme pre účely práce napísali, umožňuje priamu aplikáciu všetkých
preskúmaných metód a úpravu ich pracovných parametrov na videách vyhotovených
bezpečnostnými kamerami v reálnom ostrom nasadení, alebo na živých prenosoch z
týchto kamier po pripojení sa na IP adresu kamery prostredníctvom jej pridania do
zdrojov priloženej triedy LiveVideo v našom doplnkovom module live_video_acquirement.
V tejto písomnej časti práce sme zároveň popísali, ktoré metódy sa hodia v akých sce-
nároch nasadenia.

Obzvlášť prínosným vie byť zaostrovanie hranovým filtrom, ktoré vieme aplikovať
na priamy prenos z kamery, na ktorú sme prostredníctvom nášho programu pripojení.
Ak spracúvame už nahraný videozáznam, stojí za to video pred zaostrovaním zbaviť
šumu bez straty unikátneho detailu metódou nelokálneho priemerovania. Medzi týmto
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zbavením šumu a zaostrovaním má tiež zmysel nasadiť jednu z implementovaných ne-
urónových sietí, ak má význam pre nás zväčšenie rozlíšenia obrazu aspoň štvornásobne,
kedy začínajú mať neurónové siete kvalitatívny náskok pred bikubickou interpoláciou.
Výsledok pri použití najrýchlejšieho modelu ESPCN bude takmer na nerozoznanie od
výsledkov modelov FSRCNN a LapSRN. Ak nie sme limitovaní časom, ktorý môže pri
nasadení tohto modelu už na niekoľkosekundové video vo vysokom rozlíšení dosahovať
hodiny, o trochu lepší výsledok vieme niekedy dosiahnuť použitím modelu EDSR. Ak sa
vrátime k zaostrovaniu, a chceme ho robiť v reálnom čase, naživo, a neprajeme si preos-
trenie vnášajúce do obrazu artefakty, zaostrovanie odčítaním rozmazaného obrazu vie
priniesť pozitívne výsledky bez nutnosti predspracovania. Ekvalizácie histogramov nám
pomôžu zviditeľniť dianie v presvetlených a tmavých regiónoch pri záberoch s vyso-
kým dynamickým rozsahom, pričom silu efektu adaptívnej ekvalizácie vieme regulovať
nastavením jej parametrov. Čím agresívnejšie sa pokúsime vytiahnuť malé rozdiely
v zachytených intenzitách, tým viac artefaktov do obrazu vnesieme, značne znižujú-
cich prehľadnosť, a komplikujúcich prácu pre prípadné nasadenie neurónových sietí
alebo rozpoznávacích algoritmov na výsledok adaptívnej ekvalizácie. Preto sú ekvalizá-
cie histogramu situačné. Rovnako situačná je aj implementovaná rekolorizácia, ktorá je
spoľahlivá len ak sú na šedotónovom zábere (napríklad z kamery kombinujúcej obraz
zo spektier viditeľného svetla a infračerveného žiarenia) obsiahnuté objekty ktorým
obvykle prináležia nejaké typické farebné oditene - napríklad zeleň, potenciálne obloha
kontrastujúca s oblakmi. Tam kde je rekolorizácia zmysluplne použiteľná, umožňuje fa-
rebne separovať objekty v obraze od pozadia a zlepšiť tak ich identifikovateľnosť oproti
šedotónovému obrazu. Aplikovať ju však dokážeme len na už nahrané video, kvôli ča-
sovej náročnosti. Taktiež náš program s jednoduchou úvodnou asistenciou od ľudského
pozorovateľa umožnuje pre kamery s paralelným záznamom v infračervenom spektre
pomocou neho vyznačovať približné siluety pohybujúcich sa osôb v RGB zázname v
ľubovoľne nepriaznivých svetelných podmienkach. Vstupom do tejto metódy môže byť
aj živý prenos v týchto dvoch spektrách.

Ďalší vývoj v tejto oblasti sľubuje príchod ďalších podstatných zlepšení. Rozpraco-
vaných, alebo v stave pred zavedením do produkcie, je momentálne viacero algoritmov,
vnášajúcich nové možnosti do našej oblasti. Sú to napríklad neurónové siete špecializo-
vané na zvyšovanie rozlíšenia videa využívajúc kontext medzi jednotlivými snímkami,
softvérové riešenia kombinujúce denné a nočné zábery tej istej scény pre spoľahlivejšiu
rekolorizáciu za nízkej viditeľnosti, a množstvo navrhovaných zlepšení už existujúcich,
aj tu použitých algoritmov, ako napríklad modifikácie ekvalizácie histogramu, ktoré
takpovediac len čakajú, kým ich autori zverejnia v nasaditeľnej forme. V najbližších
rokoch budú pravdepodobne čoraz väčšiu rolu aj v doméne bezpečnostných kamier hrať
predtrénované hlboké neurónové siete, i keď kompromis medzi kvalitou a rýchlosťou
umožňujúcou nasadenie na prenos obrazov v reálnom čase sa zdá byť zatiaľ veľkou
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výzvou. Tak či tak sa budúcnosť identifikácie objektov v priestoroch pod dohľadom
bezpečnostných kamier javí vďaka veľkému záujmu výskumníkov o oblasť spracovania
obrazu nádejne.



66 Záver



Literatúra

[1] R. Huber, “Slowenien, portorose, salzlagerhalle am hafen (hdr-aufnahme vs. nor-
malbelichtung),” 2008. [Online; accessed 22-March-2023].

[2] F. Brandi, R. de Queiroz, and D. Mukherjee, “Super resolution of video using
key frames,” in 2008 IEEE International Symposium on Circuits and Systems,
pp. 1608–1611, 2008.

[3] J. Pan, D. Sun, H. Pfister, and M.-H. Yang, “Deblurring images via dark channel
prior,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40,
no. 10, pp. 2315–2328, 2018.

[4] T. Soumya and S. Thampi, “Self-organized night video enhancement for surveil-
lance systems,” Signal, Image and Video Processing, vol. 11, 01 2017.

[5] A. Buades, B. Coll, and J.-M. Morel, “Non-Local Means Denoising,” Image Pro-
cessing On Line, vol. 1, pp. 208–212, 2011. https://doi.org/10.5201/ipol.

2011.bcm_nlm.

[6] A. Sakaushi, K. Kanai, J. Katto, and T. Tsuda, “Edge-centric video surveillance
system based on event-driven rate adaptation for 24-hour monitoring,” in 2018
IEEE International Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops), pp. 651–656, 2018.

[7] Y. Rao and L. Chen, “A survey of video enhancement techniques,” Journal of
Information Hiding and Multimedia Signal Processing, vol. 3, pp. 71–99, 01 2012.

[8] Y. Ali, W. Md-Esa, A. Malik, and M. N. MOHAMAD SAAD, “Tone mapping of
hdr images: A review,” pp. 368–373, 06 2012.

[9] M. Nilsson, “Ultra high definition video formats and standardisation,” 04 2015.

[10] D. Kong, M. Han, W. Xu, H. Tao, and Y. Gong, “Video super-resolution with
scene-specific priors.,” in BMVC, pp. 549–558, 2006.

67

https://doi.org/10.5201/ipol.2011.bcm_nlm
https://doi.org/10.5201/ipol.2011.bcm_nlm


68 LITERATÚRA

[11] Y. Liu, A. Wong, and P. Fieguth, “A structure-guided conditional sampling model
for video resolution enhancement,” in 2011 18th IEEE International Conference
on Image Processing, pp. 1169–1172, 2011.

[12] R. Keys, “Cubic convolution interpolation for digital image processing,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 29, no. 6, pp. 1153–
1160, 1981.

[13] W. Freeman, T. Jones, and E. Pasztor, “Example-based super-resolution,” IEEE
Computer Graphics and Applications, vol. 22, no. 2, pp. 56–65, 2002.

[14] F. Cristina, S. H. Dapoto, C. C. Russo, and O. N. Bria, “High resolution images
from low resolution video sequences,” Journal of Computer Science & Technology,
vol. 5, 2005.

[15] R. Schultz and R. Stevenson, “Extraction of high-resolution frames from video
sequences,” IEEE Transactions on Image Processing, vol. 5, no. 6, pp. 996–1011,
1996.

[16] X. Ge, J. Tan, and L. Zhang, “Blind image deblurring using a non-linear channel
prior based on dark and bright channels,” IEEE Transactions on Image Processing,
vol. 30, pp. 6970–6984, 2021.

[17] S. Chunhe, Z. Hai, and J. Wei, “Motion deblurring from a single image using
multi-layer statistics priors,” in 2011 IEEE International Conference on Consumer
Electronics (ICCE), pp. 481–482, 2011.

[18] X. Wang, K. C. Chan, K. Yu, C. Dong, and C. Change Loy, “Edvr: Video resto-
ration with enhanced deformable convolutional networks,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, June 2019.

[19] X. Ji, Y. Cao, Y. Tai, C. Wang, J. Li, and F. Huang, “Real-world super-resolution
via kernel estimation and noise injection,” in The IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops, June 2020.

[20] Y. Tian, Y. Zhang, Y. Fu, and C. Xu, “Tdan: Temporally-deformable alignment
network for video super-resolution,” in The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2020.

[21] J. Pan, S. Cheng, J. Zhang, and J. Tang, “Deep blind video super-resolution,”
2020.



LITERATÚRA 69

[22] D. Su, H. Wang, L. Jin, X. Sun, and X. Peng, “Local-global fusion network for
video super-resolution,” IEEE Access, vol. 8, pp. 172443–172456, 2020.

[23] Y. Jo, S. W. Oh, J. Kang, and S. J. Kim, “Deep video super-resolution network
using dynamic upsampling filters without explicit motion compensation,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

[24] MMagic Contributors, “MMagic: OpenMMLab multimodal advanced, generative,
and intelligent creation toolbox.” https://github.com/open-mmlab/mmagic,
2023.

[25] R. Taiyenjam, O. Imocha Singh, K. Singh, T. Sinam, and T. Singh, “Image en-
hancement by adaptive power-law transformations,” 12 2010.

[26] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, “Photographic tone repro-
duction for digital images,” in Seminal Graphics Papers: Pushing the Boundaries,
Volume 2, pp. 661–670, 2023.

[27] R. Fattal, D. Lischinski, and M. Werman, “Gradient domain high dynamic range
compression,” in Seminal Graphics Papers: Pushing the Boundaries, Volume 2,
pp. 671–678, 2023.

[28] F. Drago, K. Myszkowski, T. Annen, and N. Chiba, “Adaptive logarithmic mapping
for displaying high contrast scenes,” in Computer graphics forum, vol. 22, pp. 419–
426, Wiley Online Library, 2003.

[29] R. Mantiuk and H.-P. Seidel, “Modeling a generic tone-mapping operator,” in
Computer Graphics Forum, vol. 27, pp. 699–708, Wiley Online Library, 2008.

[30] B. H.K and K. N, “Video enhancement using histogram equalization with jnd
model,” International Journal of Recent Technology and Engineering (IJRTE),
vol. 8, pp. 2506–2511, 07 2019.

[31] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep residual networks
for single image super-resolution,” 2017.

[32] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert,
and Z. Wang, “Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network,” 2016.

[33] C. Dong, C. C. Loy, and X. Tang, “Accelerating the super-resolution convolutional
neural network,” 2016.

https://github.com/open-mmlab/mmagic


70 LITERATÚRA

[34] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Fast and accurate image
super-resolution with deep laplacian pyramid networks,” 2018.

[35] I. Žeger, S. Grgic, J. Vuković, and G. Šišul, “Grayscale image colorization methods:
Overview and evaluation,” IEEE Access, vol. 9, pp. 113326–113346, 2021.

[36] T. Soumya and S. M. Thampi, “Recolorizing dark regions to enhance night surve-
illance video,” Multimedia Tools and Applications, vol. 76, pp. 24477–24493, 2017.


	Úvod
	Výzvy a existujúce prístupy
	Atribúty kvality záznamu
	Všeobecne relevantné atribúty kvality videa
	Atribúty kvality osobité bezpečnostným kamerám

	Existujúce prístupy a riešenia
	Zvýšenie rozlíšenia na základe databázy blokov vysokej kvality
	Zvýšenie rozlíšenia prevzorkovaním
	Zlepšenie separovania odtieňov
	Kontextová fúzia

	Súhrn východísk

	Ciele a metodika práce
	Čas nasadenia algoritmu
	Testovacie dáta
	Návrh testovacieho programu
	Voľba programovacieho jazyka a knižníc
	Porovnávanie výsledkov
	Aplikácia algoritmov

	Testované algoritmy
	Zaostrenie obrazu
	Odstránenie šumu
	Zlepšenie kontrastu
	Odstránenie rozmazania
	Zvýšenie rozlíšenia
	Rekolorizácia
	Detekcia pohybu pomocou IR/Termo spektra


	Výsledky a vyhodnotenie práce
	Identifikácia osoby za dobrých svetelných podmienok
	Identifikácia osoby za nepriaznivých svetelných podmienok
	Identifikácia vozidla
	Prostredia s rozmanitou mierou osvetlenia
	Poveternostné vplyvy
	Prehľad implementovaných metód

	Záver

