UNIVERZITA KOMENSKEHO V BRATISLAVE
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

ZLEPSENIE KVALITY OBRAZOV Z
BEZPECNOSNYCH KAMIER
BAKALARSKA PRACA

2023
ONDREJ BUBLAVY






UNIVERZITA KOMENSKEHO V BRATISLAVE

FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

ZLEPSENIE KVALITY OBRAZOV Z
BEZPECNOSNYCH KAMIER

étudij ny program:
Studij ny odbor:

Skoliace pracovisko:

Skolitel:

Bratislava, 2023
Ondrej Bublavy

BAKALARSKA PRACA

Aplikované informatika
Informatika

Katedra informatiky

RNDr. Zuzana Cernekova, PhD






Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZAVERECNEJ PRACE

Meno a priezvisko Studenta:
Studijny program:

Studijny odbor:

Typ zaverecnej prace:
Jazyk zaverecnej prace:
Sekundarny jazyk:

Nazov:

Anotacia:

Veduci:
Katedra:
Vedici katedry:

Datum zadania:

Datum schvalenia:
garant Studijného programu

Student veduci prace



Pod’akovanie: Tu mozete podakovat skolitelovi, pripadne dalsim osobam, ktoré

vam s pracou nejako pomohli, poradili, poskytli data a podobne.

il



Abstrakt

Problematika kvality obrazov z bezpecnostnych kamier ma mnozstvo $pecifik, ktoré ju
vynimaju z klasickej témy spracovania digitdlneho obrazu a videa. Podlieha charak-
teristickej mnozine scenarov - zaberd predmetnu scénu vzdy zo vzdialenosti radovo v
metroch az desiatkach metrov, musi celit svetelnym a ¢asto aj poveternostnym pod-
mienkam nepretrzite s plynutim kazdej hodiny, dha a mesiaca, a predovsetkym neslazi
k poskytnutiu esteticky putavého, ¢o najviac realistického ¢i kinematického vizualu
svojej scény, ale k identifikacii osob, vozidiel a aktivit na nej situovanych. Tato prob-
lematika teda celi Specifickej sade vyziev, a teda si vyzaduje osobitné pristupy a nasli
v nej uplatnenie inde nevyuzivané algoritmy. Zaroven aj tu priniesli osoh mnohé z me-
tod, zamyslanych k veobecnému zvySovaniu kvality niektorych z atribiatov videa. V
tejto praci sme preskiimali paletu relevantnych pristupov a algoritmov, implementovali
tie, ktoré maju zverejnené verzie a kédy nasaditelné do praxe, a to v ramci jedného
programu, ktory umoznuje tieto metdédy kombinovat - aj s nastavenim ich parametrov
- a otestovali postupnosti ich aplikacii potazmo k beznym scenarom v akych byvaju
bezpec¢nostné kamery nasadené, a testovacim videam v tychto scenaroch zhotovenym.
Nasli sme suvislosti urc¢ujtuce vhodnost pouzitia jednotlivych algoritmov a ich kombiné-
cif na zaklade prostredia a inherentnych vlastnosti videa z daného typu bezpec¢nostnej
kamery. Dosiahli sme viditeIné zlepSenie v ¢itatelnosti ¢it a podstatnych detailov ob-
jektov zaujmu a demonstrovali sme tieto vysledky porovnaniami, z ktorych ukazky sa
zahrnuté v praci. Okrem obrazovych vlastnosti sme posudzovali aj ¢asovii narocnost
metod, a teda ich vhodnost pouzitia na zlepSenie priameho prenosu, alebo ich apliko-

vatelnost len na uz nahrany zéznam.

Krluacové slova: bezpecnostné kamery, dohladové systémy, kvalita videa, zvySovanie

rozliSenia, zvySovanie kontrastu, idenitifkicia osdb
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Abstract

The issue of the quality of images from security cameras has a number of specifics that
distinguish it from the classical topic of digital image and video processing. It is subject
to a characteristic set of scenarios - it monitors the surveilled scene from a distance on
the order of meters to tens of meters, it has to face light and often weather conditions
continuously with the passage of each hour, day and month, and above all, it’s goal is
not to provide an aesthetically appealing, most realistic, or cinematic visual of its scene,
but to identify the people, vehicles and activities situated on it. This area thus faces
a specific set of challenges, and therefore requires specific approaches, and algorithms
not used elsewhere have found application here. At the same time, many of general
methods intended to enhance the quality of some of the common video attributes have
also been beneficial here. In this work, we have explored a variety of relevant approaches
and algorithms, implemented those released and deployable for practical usage, within a
singular program that allows these methods to be combined - including setting up their
parameters - and we tested the sequences and orders of their application in common
scenarios, in which security cameras tend to be deployed, and on test videos taken
in these scenarios. We found characteristics determining the eligibility of using these
algorithms and their combinations based on the environment and inherent attributes
of the video from the given type of security camera. We have achieved a noticeable
improvement in the recognizability of features and essential details of the objects of
interest, and have demonstrated these results with comparisons, examples of which are
included in the paper. In addition to the visual properties, we have also assessed time
demanded by the methods, and hence their suitability for deployment with footage

streamed in real time, or their applicability only to already captured recording.

Keywords: security cameras, surveillance systems, video enhancement, super-resolution,

contrast enhancement, person identification
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Uvod

Boj s kriminalitou a bezpecnost verejnych, pracovnych ¢i sikromnych priestorov je
od nepamaéti implicitnou témou néleziacou Iudskej civilizacii. Dalo by sa polemizovat,
ze bezpec¢nostné kamery v nej priniesli najvacsi prielom od ¢ias kodifikicie prvych
zakonov, kedze umoznili nesporné dokazovanie ich poruSenia alebo neporusenia, 24
hodin denne, 7 dni v tyzdni. Kvalita obrazu z bezpecnostnych kamier je pritom dolezita
z perspektivy pritomnosti, minulosti, ako aj budicnosti. Dostato¢ne detailny zaznam v
realnom ¢ase pracovnikovi poverenému dohl'adom nad priestorom dovoluje identifikovat
pohyb o0sbdb, vozidiel, inych objektov, a vykon aktivit v hom, bez nutnosti jeho fyzickej
pritomnosti, a teda aj na viacerych miestach ¢i z viacerych uhlov pohladu stucasne.
Rovnako méze sluzit automatizovanému klasifikaénému, pripadne poplasnému systému,
vyuzivajicemu kamerové systémy pre sledovanie tohto priestoru. Z pohladu minulosti
umoziuje spolahlivé vySetrenie nehodovych udalosti ¢i bezpecnostnych incidentov. A
do budicnosti im tak umoziuje predchadzat — ¢i uz aktivne — napravenim predoslych
chyb v ochrane priestoru, alebo pasivne — odradenim pachatelov.

Doposial k datumu zadania tejto prace nebol navrhnuty algoritmus, ani defino-
vana metodologia, vedica k vSseobecnému zlepSeniu kvality vystupnych obrazov z bez-
pe¢nostnych kamier. Prezentované algoritmy relevantné v tejto problematike sa bud
zapodievali len jednou z moznych oblasti, ktorymi urc¢ujeme kvalitu videa a identifi-
kovatelnost objektov a aktivit na fiom zachytenych, nehladiac na kombinovatelnost
s pristupmi cieliacimi na iné zlepsiteIné atributy, alebo sa ani nezaoberali konkrétne
doménou bezpecnostnych kamier a jej Specifikami, ale digitalnym videom ako takym.
My sa pokusime zlepSenie kvality zaznamov z dohladovych systémov ponat ako samo-
nosnd ulohu s jednotnym cielom, ktory posudzujeme zlepSenim schopnosti Tudského
alebo programového pozorovatela identifikovat objekty a kontext v moznych scenaroch
v rdamci nasadenia bezpec¢nostnych kamier.

V kapitole 1 identifikujeme vyzvy, problémy a atributy, v ktorych zlepSenie pris-
pieva k zlepsSeniu celkovej kvality zaznamu. Taktiez sa v nej pozrieme na uz existujtce
pristupy a metoédy a na ich relevanciu pre nasu oblast. V kapitole 2 uvedieme, aké
algoritmy implementujeme pre ucely tejto prace, a akym spdsobom a na akych vide-
ach ich testovat. Porovnévat pritom nebudeme - narozdiel od mnohych prac na tému

spracovania obrazu - iba samostatné algoritmy, ale najméa rézne kombinacie tychto al-
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goritmov, vratane poradi ich nasadeni, v zmysle vytyceného ciela dosiahnut zlepSenie
presahujice viacero kvalitativnych kritérii. Vysledky tychto porovnani na testovacich
videdch spadajtcich do Sirsej palety realistickych a beznych scenarov budeme prezen-
tovat v kapitole 3, kde zhodnotime aj ich namerani ¢asovi naro¢nost, a teda moznost

nasadenia na zivy prenos v redlnom cCase a nie len na uz zhotoveny zaznam.



Kapitola 1
Vyzvy a existujice pristupy

Aby bol zaznam z bezpecnostnej kamery ¢o najndpomocne;jsi pri predchadzani, odhalo-
vani a vySetrovani Skodnej ¢i priamo kriminalnej ¢innosti, musi byt pri jeho vyhotovo-
vani, pripadnom ukladani a zobrazovani, kladeny doraz na urcité atributy jeho kvality,
¢ uz mé zéaznam slazit Tudskému pozorovatelovi, alebo nejakému rozpoznéavaciemu
algoritmu. Aktuélne neexistuje Ziadna norma ani Standard definujuci tieto atributy,
avSak v rozsahu nasSej préce si ich definujeme, aby sme si vedeli orienta¢ne stanovit
metriky, zlepSenie v ktorych tusti zaroven k zlepseniu v praktickom nasadeni. Pozrime

sa teda na aspekty, ktoré budeme sledovat.

1.1 Atribuaty kvality zdznamu

Kontext kvality obrazu systémov bezpecnostnych kamier je podmnozinou oblasti kva-
lity videozaznamu, ktory je podmnozinou oblasti kvality digitdlneho obrazu. Preto
niektoré atributy, ktorymi sa budeme zaoberat, si zaroven predmetom zaujmu zmiene-

nych nadmnozin, a niektoré naberaji osobity déraz v odvetvi bezpe¢nostnych kamier.

1.1.1 VsSeobecne relevantné atribtuty kvality videa

e Jednou zo zakladnych metrik kvality digitdlneho obrazu je rozlisenie. V dnes-
nej dobe uz st dostupné senzory vysokych rozliseni za relativne nizke ceny, za
¢o vdacime aj takzvanej honbe za megapixelmi. Samotné rozliSenie je pri bez-
pecnostnych kamerach vyzvou v dvoch hlavnych pripadoch. Jeden z pripadov,
kedy potrebujeme vyssie rozliSenie, nez je priemyselnym standardom (najcastej-
Sie 720p a 1080p), je, ked je kamera umiestnené tak, aby pozorovala rozsiahly
priestor (napriklad velké parkovisko), a teda velkost detailov, ako Tudské tvare ¢i
evidenc¢né ¢isla vozidiel, je v pomere k celému zaberu nepostacujtica. Algoritmy
spolahlivo dopocitavajice pixely obrazu, Skdlujic ho na vyssie rozliSenie tak, aby

doglo k zlepSeniu rozoznatelnosti detailu a nie len k pocitu, Ze obraz ako celok
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je kvalitnejsi, no neobsahuje viac informacii, st stale v podstate v plienkach.
Vzostup umelej inteligencie a narast miery jej chédpania kontextu vizuélnej infor-
macie to vSak rychlo meni. Jednym z pripadov, kedy si zas vysoké rozliSenie pri
zazname nemodzeme dovolit je, ked je zéznam z bezpec¢nostnej kamery ukladany
na pamatové médium. To mé totiz obvykle obmedzenu kapacitu a zvySenie roz-
ligenia ukladaného obrazu bude mat za nasledok znizenie dlzky zaznamu, ktora
dokazeme na paméatovom médiu uchovat. Zaujimavym pristupom v tejto oblasti
je udalostami riadené adaptacia, kedy sa systém snazi rozliSovat casové tuseky s
nizkou ¢i neexistujicou aktivitou (zmenou na zébere), ktoré nie je nutné ukladat
vo vysokej kvalite, a ¢asové tseky, kedy potencidlne dochadza k udalosti — zmene
pozorovaného stavu — ktortt moézeme mat zaujem zachovat v zazname vysokej

kvality, pre pripad budiceho presetrenia [6].

Okrem rozliSenia hra v rovnici kvality zaznamu a dostupného tloziska rolu aj d'al-
Sia premennd — pocet snimok za sekundu. Aj na tento parameter vieme aplikovat
udalostami riadent adaptéciu. Okrem toho s na vzostupe algoritmy dopocita-
vajuce snimky medzi dvojicami skutocne zaznamenanych zaberov, tu vSak opéat
plati, Ze je velmi obtiazne a v praxi obvykle nemozné dopocitat informaciu tam,
kde nam na origindlnom zézname chyba. Tieto algoritmy len zvysuji vnimani
plynulost zaznamu, no nedokazu pomoct odhalit skuto¢nosti, ktoré sa na povod-

nom zazname neobjavili.

Bitova hlbka nam hovorf o rozsahu farieb a ich jasov, ktorymi dokazeme repre-
zentovat obraz v digitélnej podobe. VAEsi vyznam v aplikacii bezpecnostnych ka-
mier vSak ma dynamicky rozsah. Ten nam hovori o schopnosti samotnej kamery
rozsah v redlnych prostrediach presahuje rozsah reprezentovany v 8-bitovych tex-
tarnych mapéch [7][8]. Je velmi dolezity pri praci s prirodzenym osvetlenim, kedy
jasnost prostredia dosahuje od radovo niekol'kych nitov po rddovo desattisice ni-
tov [9].

Pomer signalu a Sumu je vyznamny pre subjektivne vnimanu kvalitu obrazu.
Znac¢ne zaSumeny obraz komplikuje Tudskému pozorovatelovi, a o to viac pri-
padne nasadenym rozpoznévacim algoritmom, schopnost identifikovat objekty,
ich hranice a ¢rty, no aj ich pohyb. Metédy na odstranovanie Sumu pomahaja

zvyrazneniu skutocnej informécie, nedotvaraju vsak stratent informaciu.

Ostrost je velmi dolezita metrika v kontexte bezpecnostnych kamier, kedze urcuje
vyraznost (kontrast) hran v obraze, a teda aj separovatel nost a identifikovatelnost

¢ft a objektov.
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Obr. 1.1: Porovnanie zaberu zachytévajuceho scénu vo vysokom (nalavo) a v nizkom

(napravo) dynamickom rozsahu [1]

1.1.2 Atribtiaty kvality osobité bezpecnostnym kameram

e Zorny uhol v praxi hovori o tom, aky rozsiahly a pripadne zakriveny priestor do-
kédzeme pokryt jednou kamerou. Tato metrika je vSak ur¢ena dostupnym hardvé-
rom, od softvéru zavisi az nasledné spracovanie zakrivenia, pripadne rozmazania

a skreslenia na krajoch obrazu.

e Vlastnosti pri nizkej hladine osvetlenia naberaju obzvlast velky vyznam pri bez-
pecnostnych kamerach, nakol'ko znacné c¢ast zéznamu bude pri vac¢sine aplikacii
vyhotovovana za tmy. Ako velmi zalezi na schopnostiach kamery a obraz spracu-
vajuceho softvéru pri nizkom osvetleni zavisi od prostredia, v ktorom je kamera
pouzita. Kamery, ktoré si umiestnené v konstantne osvetlenych priestoroch, naj-
Castejsie interiéroch, alebo priestoroch kde je osvetlenie automaticky aktivované
senzorom pohybu, mozu zanedbat aspekt pouZitelnosti pri najnizsich hladinach
ambientného jasu. Doraz na schopnosti v tme nemusia klast ani kamery insta-
lované za tucelom sledovania priestoru v Case, kedy sa v hom ocakava zvySena
aktivita T'udi, ak je to len za denného svetla. VacSina aplikicii je v8ak spata s
nepretrzitym zaznamom a ak nie je kamerovému systému napomocné automa-
tické osvetlovanie priestoru v pripade aktivity detekovanej inym senzorom, si
schopnosti sprostredkovat ¢rtovo a informacne ¢itatelny obraz za tmy minimalne
rovnako dolezité, a casto dolezitejsie, nez vlastnosti obrazu cez den — ¢o nie vzdy

plati pri posudzovani kvality kamerového zaznamu pre vSeobecnejsie aplikacie.

7 tohto prehladu nam vyplyva, Ze vicSina atributov kvality je zhodné s v8eobecnej-
simi aplikdciami kamerovych zaznamov, a teda mnohé algoritmy pévodne nezamerané

Specificky na bezpec¢nostné kamery, budid mat znacny prinos aj v tejto podoblasti.
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1.2 Existujiice pristupy a rieSenia

Zhrnuli sme si hlavné oblasti, v ktorych vieme dosahovat zlepSenie pre celkovi kvalitu
videozaznamu z bezpec¢nostnych kamier. Predstavme si teraz myslienky niektorych z

najosoznejsich pristupov venujucich sa tymto oblastiam.

1.2.1 ZvySenie rozliSenia na zaklade databazy blokov vysokej

kvality

Ako bolo zmienené v prvej ¢asti kapitoly, mézeme mat k dispozicii kameru s vysokym
rozliSenim, avSak nemat kapacitu ukladat snimky vo vysokom rozliSeni po dostatocne
dlha dobu. Predstavme si, ze by sme chceli vyhotovovat 8K zéznam s frekvenciou 30
snimok za sekundu a uchovévat ho po dobu 48 hodin, napriklad pre pripad vySetro-
vania kriminélnej ¢innosti. Museli by sme ukladat 30 fps x 3600 sekiind x 48 hodin
= 4147200 snimok, pricom kazda by bola o rozmere 7680 x 4320 pixelov, a na repre-
zentaciu kazdého pixelu by sme pouzili 24 bitov (8 bitov pre kazdy farebny kanal).
Potrebovali by sme tak minimalne (4147200 x 7680 x 4320 x 24) / 8 bitov ~ 28840
GB, teda skoro 30 TB. Toto ¢islo vieme niekolkonasobne znizit kompresiou videa, no
stale budeme zaznamom okupovat pamét radovo minimalne v par terabajtoch. A ¢o ak
by sme chceli zaznam uchovévat nie dva dni, ale dva tyZdne'? Ako vieme vyrazne uset-
rit poziadavky na pamét bez toho, aby sme sa vzdali mnozstva podstatnych informéacii
vo videu? Jednym z moznych rieSeni je ulozit vSetky, alebo vacsinu snimok v znize-
nom rozliSeni. Na rekonstrukciu detailov v snimkach nizsieho rozliSenia sa najcastejsie
vyuziva databéza, v ktorej sa hlada blok pixelov vo vysokom rozliSeni najpodobnejsi
danému zaostrovanému bloku po interpolacii. Na zaklade skladby databézy blokov vo

vysokom rozliSeni, sii najcastejsie nasledujtice dva pristupy:

1.2.1.1 Ukladanie kI'di¢ovych snimok

MéZeme v origindlnom rozliSeni ukladat kazdy k-ty (alebo inym vzorcom pravidelne
zvoleny) zaber alebo statické snimky [10] a néasledne vyuzit tieto klacové zabery v
povodnej kvalite k dopocitaniu nezachovanych detailov na ostatnych snimkach. Tento
koncept ilustruje obrazok 1.2 z ¢lanku [2|. Majme pri tom na vedomi, Ze vSetky zabery,
vratane tych klacovych, sa ukladaju komprimované. Avsak zabery, ktoré nie su kluco-
vymi, sa navySe ukladaji v znizenom rozliSeni. Pri popisovanom pristupe, je databaza
tvorena blokmi kli¢ovych snimok. V ¢lanku [2] sa ako pristup pri naslednom dopoéita-

vani vyuziva parameter energie, ktori dany blok nesie, predstavujicej hustotu detailu,

'Kym do roku 2018 bolo na Slovensku legélne uchovévat kamerové zéznamy z bezpednostnych

kamier po dobu maximalne 15 dni, v sti¢astnosti uz je to len 72 hodin.
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Obr. 1.2: Myslienka ukladania kazdého k-teho zadberu v pévodnom rozliseni z ¢lanku
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a bloky, ktoré prekrocia urcent hranicu, stt nahradené prislichajicimi interpélovanymi

blokmi z databéazy blokov kltucovych snimok, ktora je o ne nasledne aktualizované.

1.2.1.2 Vyuzitie rozsiahlej existujicej databazy

Inou moznostou je vyuzivat rozsiahlu databazu "trénovacich"zaberov, podobne ako pri
trénovani umelej inteligencie, a ku kazdému interpolovanému bloku v nizSom rozliSeni
hladat najpodobnejsi blok vo vysokom rozliSeni v celej databéaze, alebo jej Casti urce-
nej predoslou skusenostou, pre urychlenie procesu. Vyhoda tohto pristupu je, ze bez
ukladania akychkol'vek snimok v pévodnom rozliSeni umoziuje este znacnejsie znizenie
celkovej paméte potrebnej pre ulozenie rovnako dlhého zaznamu. Naopak nevyhodou
je, ze napriek rychlemu rozvoju v tejto oblasti, stale nemusi byt jednoduché dostat sa
v ramci prijatelnych nakladov k databaze dostatocnej robustnosti. Tento pristup je
tiez naro¢nejsi na nasledné prehladavanie tejto databazy [11], ¢o plynie z velmi vel-
kého mnozstva blokov vo vysokej kvalite, ktoré musi obsahovat, aby dokazala vyhoviet
vSetkym, alebo velkej vac¢sine scenarov. TaktieZ tento pristup nie je velmi uéinny pri
identifikéacii 0osob, kedZe je nepravdepodobné, Ze by sme ¢loveka s danou tvarou nasli v

databaze.

1.2.2 ZvySenie rozliSenia prevzorkovanim

Kazdy zaber videa zvyc¢ajne obsahuje silno a slabo strukturované regiony. Silno Struk-
tarované regiony sa skladaji z takmer homogénnych oblasti obrazu, ako jednofarebné
steny, obloha, ¢ akykolvek iny celistvy zhluk pixelov, ktory Tudské oko povazuje za
jeden uceleny objekt s jednym farebnym odtienom. Medzi tymito objektami st v silno
Struktirovanych regionoch velmi jasne definované hranice (napriklad ram okna, na

rozdiel od napriklad vin na vodnej hladine). Slabo Struktirované regiény nie st na
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zaberoch jednoznac¢ne definované tvarmi a farbami. Dobrym prikladom st napriklad
Tudské vlasy, alebo aj ¢rty Tudskej tvare. Existuju algoritmy, ktoré na zaklade tychto
struktur a gradientov Casti obrazu dopocitavaju pixely definujice regiony vo vysSom
rozliSeni. Zaroven sa osvedcilo spracivat silno a slabo Strukturované regiony separatne
a v roznych skalach pre rozne priestorové struktury [11]. Algoritmy v tejto oblasti sia-
haji od jednoduchych, matematicky zaloZenych a pracujtcich v priestorovej doméne
obrazu, vyuzivajucich napriklad interpolacie (ako [12]), po pristupy zaloZené na prikla-
doch a uceni na zaklade vzoriek [13]|. Obe strany spektra nesa svoje problémy a hodia

sa do odlisne naro¢nych podmienok.

1.2.2.1 Matematicky motivované metody

Najzakladnejsimi matematickymi metédami, uréenymi k prevzorkovaniu zaberu, ¢ize
aj zvysenia rozliSenia, bez akejkol'vek informacie na pozadi, kontextu, a bez suvislosti
s dalsimi snimkami videa, st interpolacie. Chybajuce pixely dopocitavaju na zaklade
uz existujacich v ich susednosti. Najpouzivanejsia a najefektnejsia interpolacia je bi-
kubicka, potom bilinearna, a technika najblizSicho suseda, ktora je najrychlejsou a
najprimitivnejsou moznostou. Napriek tomu, Ze interpolacie st rychlym rieSenim, ne-
prinésaji dostatocne uspokojivé vysledky v doménach, kde je najvyssi doraz kladeny
na jednoznacnost zachytenej informacie [14|. Interpolacie, posudzujice kazda snimku
videa individualne, st totiz principidlne obmedzené mnozstvom usmeriujicej infor-
macie v tej danej snimke a nedokazu zuzitkovat kvantitativnu vyhodu videa oproti
fotografiam [15]. Dalsfm matematicky motivovanym pristupom je technika zvana Ma-
ximum A Posteriori (MAP), zalozena na Bayesovskej teorii. ZvySovanie rozliSenia videa
pomocou MAP techniky sa ukazalo tspesnejsie v zachovévani ostrych rohov v obraze.
Tato technika podlieha dalsiemu vyskumu, kedZe kombinuje odhad obrazu vo vysokom
rozliSeni a aproximujtcu sustavu rovnic spajajucu ho so zaberom z videa [14]. Podla
tohto ¢lanku sa d'alej oplati predspracuvat zabery z videa pred tym, neZ sa pokusime
o zvySenie ich rozliSenia, a to najmé odstranenim Sumu a rozmazania. Rozmazanie
je pre video inherentnym problémom. Hoci Tudsky mozog ho pri rychlo sa striedaju-
cich zaberoch potlaca [15], pre algoritmy predstavuje znaént komplikaciu. Schopnych

algoritmov potlacajucich rozmazanie bolo navrhnutych viacero: [3], [16], [17].

1.2.2.2 ZvySovanie rozliSenia s vyuzZitim neurénovych sieti

Naproti matematickym metédam stoja pristupy zaloZené na strojovom uceni, ktoré
donedévna v praxi ¢elili problémom s dostupnostou dostatku trénovacich vzoriek, a
stale do istej miery Celia, ¢o moZe mat velky dopad prave na unikitne detaily - ob-
zvlast tvare, ¢iasto¢ne aj evidencéné ¢isla vozidiel. Ich vhodnost pre praktické pouzitie

je otézna, kvoli vykonu nutnému na rychle fungovanie takychto algoritmov pri pou-
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Obr. 1.3: Vysledok (napravo) aplikacie pristupu [3] na rozmazany zaber (nalavo)

ziti v redlnom case. Po rozsiahlom prieskume sme dosli k zisteniam, Ze v Case pisania
prace su relevantné algoritmy dedikované zvySovaniu rozliSenia videa pomocou hlbo-
kych neurénovych sieti v stave tvorby zverejnitelnej implementacie [18]| [19], alebo
neposkytuji dostatocnit dokumentéciu k tomu, aby sme vramci tejto prace vedeli tieto
algoritmy otestovat na vlastnych zaznamoch z domény bezpeénostnych kamier [20]
[21] |22], alebo zdrojovy kod vobec nezverejiuju [23]. Velmi s[ubny, rozsiahly a po-
merne novy toolkit, obsahujici mnozstvo algoritmov zameranych na prepojenie po-
¢itacového videnia a hlbokych neurénovych sieti, ktoré obsadili popredné miesta na
udalosti NTIRE (https://cvlai.net/ntire/2024 /), vratane zvySovania rozliSenia videa s
vyuZitim viacerych dedikovanych modelov a algoritmov, je MMagic [24]. Zial vSak ne-
poskytuje dostato¢ne obsiahlu dokumentéaciu, a navody k pouzitiu metdd relevantnych
pre nasu pracu st momentalne k dispozicii len v ¢inskom jazyku, z ktorého automa-
ticky, aplikidciami tretich stran sprostredkovany preklad do angli¢tiny je pri odbornej

terminologii velmi nespolahlivy.

1.2.3 ZlepSenie separovania odtienov

Pristupy zvysujice rozliSenie napomahajua zvyrazneniu detailov na zabere, samostatny
vyznam vSak nest len za dobrych svetelnych podmienok. Za znizeného osvetlenia je
prvoradé objekty a tvary na zabere viditelne separovat odtienmi. Je lahké presvedcit sa
pomocou o¢nych klamov, Ze zrakové centrum Iudského mozgu vnima farebné odtiene
relativne, porovnava ich medzi sebou navzajom. Robi tak, aby za Tubovolnych svetel-
nych podmienok zachovalo schopnost odhadnut skuto¢nu farbu objektov a klasifikovat
ich na jej zéklade. V digitalnej podobe v8ak pixelom priradujeme absolitne hodnoty z
urc¢itého diskrétneho rozsahu, ktory je este k tomu znac¢ne mensi, nez rozsah odtienov

a jasnosti, s akymi vie pracovat Tudsky zrakovy systém [8]. V ramci tohto digitalneho
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rozsahu by sme sa preto chceeli ¢o najviac priblizit takému podaniu vizualnej informacie,
na zaklade ktorého dokaze mozog spolahlivo separovat a klasifikovat objekty. ZlepSenie
zaberu vieme robit na zaklade jeho samotného, alebo na zaklade d'alsich zaberov. Medzi
najtradi¢nejSie sposoby samozlepsenia snimku patri zlepsenie kontrastu. Metody zame-
riavajlice sa na zlepSenie kontrastu sa delia na priame — tie definuju mieru kontrastu
a snazia sa ju zlepSit, a nepriame — tie zlepSuju kontrast vyuzitim nevyuzitych casti
dynamického rozsahu bez toho, aby definovali nejaku $pecifick mieru kontrastu |7]. Al-
goritmy zlepsujtce kontrast vyuzivaju dva zakladné pristupy. Prvym je ekvalizécia his-
togramu, kedy sa obvykle snazime ¢o najrovnomernejsie rozprestriet poc¢etnosti pixelov
jednotlivych intenzit po celom spektre. Nemusime sa vSak snazit len o rovnomerné roz-
delenie, vyuziva sa aj logaritmicky pristup, alebo power-law pravidlo [25]. K zachovaniu
urovni vstupnych jasov bolo navrhnutych viacero metod zalozenych na ekvalizacii histo-
gramu: Stred zachovavajica bi-histogramova ekvalizacia (BBHE - mean preserving bi-
histogram equalization), rovno-obsahova dualistickd podobrazové ekvalizacia (DSIHE
- equal area dualistic sub-image histogram equalization), bi-histogramova ekvalizéacia
minimalizujtca stredni jasovi odchylku (MMBEBHE - minimum mean brightness er-
ror bi-histogram equalization), rekurzivna stredno-rozptylova histogramova ekvalizacia
(RMSHE - recursive mean-spread histogram equalization) a multi-histogramové ek-
valizacia [7|. Druhym zo zékladnych pristupov, ktoré vyuzivaja algoritmy zlepSujice
kontrast zaberov, je mapovanie odtienov. Jeho ciel je v podstate rovnaky, ako pri ekva-
lizacii histogramu — komprimovat alebo premapovat dynamicky rozsah HDR obrazov
do rozsahu vhodného pre zobrazenie na zariadeniach so standardnym dynamickym roz-
sahom (SDR) [8], zachovajtic pri tom ¢o najviac detailov a vizuélnej informacie a pokial
mozno posobiac prirodzene — hoci prirodzeny vzhlad obrazu nemusi byt pri bezpedc-
nostnych kamerach prioritou (ma v8ak vyznam napriklad aj pre redukciu zrakovej a
kognitivnej inavy v pripade, Ze za monitormi systému dlhodobo sedi povereny pracov-

nik). Medzi algoritmy premapovania odtienov patria napriklad nasledovné techniky:

e Reinhardove mapovanie odtieniov sa snazi napodobnit spdsob, akym sa Iudsky
zrak adaptuje na rozlicné svetelné podmienky. Komprimuje dynamicky rozsah
obrazu tak, aby zachovalo lokalny kontrast a saturaciu. Pévodne islo o asistovany
proces - vyzadoval od zhotovitela snimky vyznacenie najsvetlejSieho, najtmav-
Sieho a stredne tmavého (referenéného) miesta v obraze k vypoéitaniu dynamic-
kého rozsahu. Neskor Reinhard a kolektiv automatizoval tento proces vyuzivajic
kruhovy Gaussov operator v roznych skalach aplikovany na cely zaber, opravujic

presvetlené a tmavé regiony. |26]

e Fattalove mapovanie odtienov taktiez priorizuje lokalny kontrast a snazi sa ho
zlepSit, zatial ¢o zabery si zachovavaju prirodzene posobiaci vzhlad. Kompri-

muje gradient jasového komponentu obrazu a rieSenim jeho Poissonovej rovnice
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konstruuje prislachajuci obraz v zobrazitelnom dynamickom rozsahu. [27]

e Dragove mapovanie odtienov sa opat zameriava na lokdlny kontrast, a taktiez na
potlacenie halo efektov, ktoré sit beznym neziadicim sprievodnym javom prema-
povavania odtienov. Pracuje s adaptivnym upravovanim logaritmickych zakladov,
na béaze ktorych sa komprimuju hodnoty jasnosti v obraze. Na zlepSenie tmavych

oblasti pouziva zvySovanie kontrastu. [28|

e Mantiukove mapovanie odtienov modeluje genericky operator, ktory aproximuje
lokalne a globalne operatory vyuzité v inych algoritmoch vypoctovo nenaroc-
nymi operaciami. Jeho vysledky s ¢asto vizuéalne neodliitelné od algoritmov na

mapovanie odtienov vyzadujucich zna¢né mnozstva strojového casu. [29]

Ukézalo sa, ze exponencialne operdtory mapovania odtienov prinasaju vyssie sub-
jektivne vnimané zlepSenie dynamického rozsahu nez logartimické [8]. Mapovanie odtie-
nov sa obvykle vykonava len v kanali iluminécie a na logaritmickej skale, pricom mapa
Ziarenia vo floatovej reprezentacii sa konvertuje do 8-bitovej reprezentacie pouzitel-
nej k renderovaniu [7]. Vy$si dynamicky rozsah mozno taktiez dosiahnut kombinaciou
viacerych obrazkov z rovnakej scény s roznymi ¢asmi expozicie. Relativne intenzity
presvetlenych ¢asti st kvalitne zachytené pri kratkej uzavere objektivu, zatial ¢o pri
dlhej stihne na Sosovku dopadnut dostatok svetla na to, aby vynikli aj rozdiely me-
dzi intenzitami v tmavej ¢asti zaberu [8]. Vysledkom je mapa floatov reprezentujucich
hodnoty Ziarenia s hodnotami proporénymi tomu v skuto¢nej scéne. Tento sposob je
vSak v kontexte bezpecnostnych kamier prakticky takmer nepouZzitelny, kedZe je nutné
podpora zo strany samotnej kamery, ktora nie je u vacsiny produktov samozrejmostou,
a to z logického dévodu, Ze luxus vyhotovovania jedného zéaberu niekolkokrat sa velmi
tazko zmysluplne realizuje v ramci videa. V tom obvykle priorizujeme pocet snimok
za sekundu, nehovoriac o vypoctovej narocnosti okamzitého kombinovania a ladenia
tychto zaberov. To je vyzvou napriklad aj pre najmodernejsie vlajkové lode medzi si-
¢asnymi smartfonmi, vyuzivajicimi vysokovykonné ¢ipy, akymi bezpec¢nostné kamery
v praxi nedisponuji, a z ekonomickych dovodov pravdepodobne este dlho disponovat

nebudu.

1.2.4 Kontextova fazia

Algoritmy zlepSujiice vSeobecné vided zvyCajne venuji zvySend pozornost odstrano-
vaniu zahmlenia, Sumu, oparu a atmosférickych javov. Neprodukuja vsak uspokojivé
vysledky pri no¢nych zaznamoch z bezpec¢nostnych kamier, pretoze st zéavislé od jasu
pixelov [4]. Vyhodou domény bezpe¢nostnych kamier, ktort uchopili niektoré algo-
ritmy, je, Ze kamery st obvykle umiestnené staticky pred ti isti scénu po cely cas —

teda cez den aj v noci. Tym padom si dokazeme ukladat referenéné zabery, na ktorych
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je zna¢na Cast scény zhodné so zabermi vyhotovenymi v Tubovolnej faze dna, za ideél-
nych svetelnych podmienok, a pouzit tieto na doplhanie informacii vysokej kvality za
znizenej viditelnosti. Tomuto procesu sa najcastejsie hovori kontextové fuzia a algorit-

mus kombinuje snimky z réznych ¢asti dita automaticky. Jednu z moZznych schém f|zie|

vidime na obrazku 1.4

Obr. 1.4: Schéma kontextovej fizie dat z denného a no¢ného zaberu scény navrhnuté

v ¢lanku [4]

Algoritmy na fiziu mozno rozdelit do kategorii na spodni, stredni a vysoki troven.
Tieto sa tiez oznacuju ako troven pixelov, uroven ¢ft a symbolickd troven [7]. Za za-
kladny mozeme povazovat pristup, kedy detekujeme hrany v obraze, a na zaklade nich
ho rozdelime do segmentov, pre ktoré sa snazime urcit spravny odtien sparovanim s pri-
slichajucimi segmentmi v zaberoch za lepsich svetelnych podmienok. Velkym prinosom
pre detekciu hran postav, ktoré patria obvykle medzi najzaujimavejsie informaécie vo vi-
deu, vie byt infracervené spektrum. Mnohé bezpecnostné kamery disponuju aj tymito
infracervenymi senzormi. Oc¢akavatelne v8ak nastéava znacné komplikacia pri rekon-
strukcii odtienov objektov, ktoré sa za svetla pred kamerou nevyskytovali, a odhad ich
farby, ktora je relativna voci objektom, ktoré sa nachédzali aj na svetlom aj na tmavom
zabere, je vyzvou. Dalsim stavajucim problémom je ako sa vysporiadat s neuniformnym
osvetlenim. Mnohé z algoritmov st zalozené na uniformnej iluminécii, a nevedu si dobre
ak mame viacero roznorodych zdrojov svetla. Tymi st zvy€ajne jeho umelé zdroje ako
lampy, reflektory, ich odrazy a podobne. V takychto podmienkach je esenciadlna spravna
klasifikacia osvetlenych a tmavych regionov [4]. Najslubnejsie sa v tomto ohlade javi

nasadenie neurénovych sieti, napriklad v podobe samo-organizujtcich sa map.
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1.3 Sthrn vychodisk

Vzhladom na rozsiahlost oblasti, v ktorych sa ziada zlepSovat kvalitu digitalneho ob-
razu, a ich individualnu komplexnost, nebol doposial vyvinuty algoritmus, ktory by
kombinovane cielil k zlepSeniu kazdej, alebo vac¢siny zo zmysluplnych metrik kvality.
Zamerom tejto prace bude preskiimat kombinécie algoritmov pre subdoménu bezpec-
nostnych kamier, av8ak takych, ktoré su v stave nasaditelnosti do prevadzky, alebo ich
sprevadzkovanie je v stulade s rozsahom tejto prace. Mnohé z algoritmov prezentova-
nych v tejto kapitole zial nepontkaji Ziaden zdrojovy kod ani prevzatelny softvér, a
nebudeme ich teda moct otestovat. Viac o vybere testovanych algoritmov sa ¢itatel

dozvie v podkapitole 2.4.
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Kapitola 2
Ciele a metodika prace

V tejto kapitole sa pozrieme na to, ako budeme postupovat pri aplikovani akych pri-

stupov a algoritmov na aké testovacie kamerové zaznamy.

2.1 Cas nasadenia algoritmu

Vzhl'adom na nezanedbatelni ¢asova naroénost niektorych operacii nad snimkami hra
rozdielovii rolu kedy v procese zaznamenania, spracovania, pripadného ulozenia a zo-

brazenia zaberu, sa aplikuje algoritmus.

e Pri systémoch, ktoré vyhotovovany zaznam ukladaju bez toho, aby bol v redlnom
¢ase sledovany Tudskym straznikom, alebo nejakym algoritmom vyhodnocujiacim
kontext a potencialnu neziaducu aktivitu v priestore, a teda tento zaznam bude
vzdy prehliadany az po tom, ako doslo k aktivite, ktort mame zaujem na nom
preskiimat, nie sme obmedzeni ¢asom na spracovanie videa. Aspon nie do znac¢nej
miery. Mézeme si teda dovolit napriklad 10 sekundovy tsek videa, povedzme Ze
tvoreny 10 sekund x 30 fps = 300 snimkami, spracivat pokojne niekol'ko mintt.
Nie je problematické spractvat jednu snimku aj rddovo v desatinach sekundy.
Zaroven necelime ziadnym kompromisom v pripade nasadenia takého algoritmu,
ktory na zlepSenie zaberu v ¢ase t pouziva informacie zo zaberu v ¢ase t+ 1 alebo

neskorsieho.

e Ak naopak zabery zobrazujeme v redlnom case, je ziaduce, aby tieto zabery uz
boli zlepSené, a teda zvyrazinovali informécie dolezité pre straznika (¢i uz v roli
fyzickej osoby alebo softvéru). V takom pripade je ¢as na zlepSenie snimky limito-
vany poc¢tom zaberov snimanych za sekundu. V pripade algoritmov vyuzivajiacich
neskorsie zdbery na zlepSenie predoslych, sa musime zmierit s oneskorenim. To je
vSak pri vhodne zvolenom algoritme konstantné a nemusi presahovat radovo de-

siatky sektind, ktoré malokedy predstavuji rozdiel medzi dovolenim a predidenim

15
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neziaducej udalosti (ale existuju aj také pripady nasadenia, kedy o u¢inku akti-
véacie bezpe¢nostnych opatreni - obvykle na dialku - rozhoduju tieto potencialne
desiatky sekind).

V tejto praci sa pri testovani a posudzovani algoritmov najprv zameriame na prvy
pripad, a teda nebudeme brat do uvahy ¢asovu limitaciu na zlepSenie zaberov. Néasledne
pri pristupoch, ktoré sa ukazu ako efektivne, otestujeme alebo prepocitame na zéklade
¢asu, ktory sme odmerali, Ze potrebuja, ¢i by bolo mozné ich (popripade v nejakej
odlahéenej, kompromisnej forme) aplikovat aj na druhy pripad, a zlepSovat nimi video

v redlnom case.

2.2 Testovacie data

Hoci mnohé z algoritmov budu nezavislé od kontextu videa a zaberov inych nez prave
spracuvaného, nebudeme ich testovat na individualne stojacich snimkoch, ale rovno na
videach. Tieto vide4 zaobstardame z niekolkych zdrojov, aby sme pokryli ¢o najviac

realistickych situacii:

e Za pomoci realnych bezpecnostnych kamier zapozi¢anych skolou sme nahrali nie-
kolko vlastnych zaznamov v relevantych prostrediach a za réznych svetelnych
podmienok, z réznych vzdialenosti. Aby nedoslo k poruseniu niecej ochrany si-
kromia, postavou pohybujicou sa v popredi zdberov bol autor tejto prace. Prva
z kamier je Annke T200. Tato kamera popri RGB zazname vyhotovuje aj ter-
méalny zaznam, ten vsak nie je v rovnakom rozliSeni, ani nezaberd rovnaky vysek
obrazu ako ten z RGB senzoru, preto bude nutné k jeho vyuzitiu na zlepSenie
prislachajiuceho RGB videa najst zodpovedajucu homografiu (viac v ¢asti 2.4.7).
Touto kamerou sme nahrali dve dvojice prisluchajicich RGB a termoviznych za-
berov, jednu za dina, a druhi vecer po zapade slnka, na tom istom mieste. Na
tychto videach v rozliSeni 1920 x 1080 pixelov na RGB zazname (interne nazva-
nych Annke RGB_day a Annke RGB _dark) a v rozligeni 320 x 240 pixelov na
termo zazname (interne nazvanom Annke thermo day a Annke thermo dark),
sa prechidza autor vo vzdialenosti asi 5 az 25 metrov od objektivu kamery po

parkovisku a vo ve¢ernom videu aj na prilahlom travniku, vid ukazky 2.1a, 2.1b,
9.2a, 2.2b.

Druhé z kamier je Hikvision DS-2CD2025FWD s infrac¢ervenym prisvecovanim.
Tuto kameru bolo obtiaznejsie spojazdnit, no nakoniec sme prisli na to, ze elek-
tricky zdroj (v baleni origindlny dodany nebol) mal nepatrne vacsi priemer ko-
nektoru nez kamera, a teda kamera nim nebola napajana. Problém bol provizorne

vyrieSeny vsunutim drotika a kameru sme uchytili k doske, ktort sme pripevnili k
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F;OZQ Mon 16:27:52

04-22-2024 Mon 16:27:52

Camera 02

Camera 01

(a) Annke  RGB _day (b) Annke thermo day
Obr. 2.1: Ukazky testovacieho zaznamu z kamery Annke T200 za dha

04-29-2024 04-29-2024 Mon 20:40:34

Camera 02

(a) Annke  RGB _dark (b) Annke thermo dark

Obr. 2.2: Ukazky testovacieho zadznamu z kamery Annke T200 vecCer
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zabradliu na balkéne u autora prace doma, na druhom poschodi. Ten sa nasledne

isiel poprechadzat v zornom poli kamery, a to najprv vo vzdialenosti asi 8 metrov

vzdu$nou ¢iarou pri pohlade kamery takmer kolmo dole vo vecernej tme na videu

Hikvision dark close v rozliSeni 640 x 360 pixelov 2.3, a potom vo vzdialenosti

zhruba 25 az 40 metrov od objektivu kamery v priestore prisvietenom pouli¢nou

lampou na videu Hikvision dark distant 2.4, v rozliSeni orezanom z povodnych

640 x 360 pixelov na 480 x 360 pixelov.

01-01-1970 Thu 00:31:52

Camera 01

Obr. 2.3: Ukazka videa Hikvision dark close
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00:34:40

Camera 01

Obr. 2.4: Ukazka videa Hikvision dark distant

e K prekvapivému zisteniu sa na zaklade nasho prieskumu na internete nenaché-
dza verejne dostupny dataset zaberov z bezpecnostnych kamier. Takyto mal byt
k dispozicii zdarma na stranke https://viratdata.org/, avSak pristup k nemu uz
zjavne neexistuje. Na stranke st vsak dve ukazkové vided, ktoré mal dataset obsa-
hovat. Prvé video, pre ticely préace pomenované student street, je v rozliseni 1280
x 720 pixelov a zachytava zhruba z vysky prvého nadzemného podlazia verejné
vonkajsie priestory pred budovami patriacimi univerzite v Spojenych Statoch
Americkych, v ktorych sa pohybuju Tudia za poloobla¢ného pocasia pocas dia,

vo vzdialenosti asi 10 az 50 metrov od objektivu kamery (vid ukéazka 2.5).

Obr. 2.5: Ukazka videa student _street

Druhé video, pre ucely prace pomenované "parking", je v rozliSeni 1920 x 1080

pixelov a zaznamenéva parkovisko v zadnych priestoroch rozmernej budovy so
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Obr. 2.6: Ukazka videa parking

zaparkovanymi vozidlami, v dazdi pocas dina, z vysky asi treticho az Stvrtého
nadzemného podlazia (vid ukézka 2.6). Na 53 sektnd trvajicom zazname prejde
5 T'udi s dazdnikmi vo vzdialenosti odhadom 20 az 60 metrov od objektivu kamery.

Kamera vykazuje mierne pohyby nésledkom pritomného vetra.

e Existuje mnoZstvo verejnych kamier dohladového alebo podobného typu, z kto-
rych zédznamy si nazivo zdielané na internete, zadarmo a dostupne pre Siroku
verejnost. IP adresy tychto kamier mozno ziskat zo zdrojovych kédov webstra-
nok, na ktorych sa nachadzaja, a napojit sa na ne cez HI'TP, alebo iny protokol
pomocou nami napisaného programu. Z tychto zaznamov mozno ulozit ich cast),
alebo na ne aplikovat algoritmy nazivo, poc¢as streamovania. Kvalita tychto videi
je rozna, vac¢sinou vsak trpi nizkym poc¢tom snimok za sekundu, nizkym rozlise-
nim, a vysokou mierou Sumu, najmé v noci. Tieto zédbery st tak dobrou vyzvou
pre algoritmy, napriek tomu, Ze st spravidla horsej kvality, nez tie vyhotovené
vacsinou modernych bezpecnostnych kamier. Ich vyhoda je, Ze st zbierané z ka-
mier umiestnenych naprie¢ celym svetom, a teda v réznych ¢asovych pasmach a
za roznych poveternostnych podmienok. Obvykle ale sleduji prostredie z vacsej
vzdialenosti, nez je bezné pre bezpecnostné kamery, a niekedy ide o prostredia, v

ktorych by nasadenie bezpec¢nostnych kamier ani nebolo opodstatnené.

Ako stucast implementécie sme si vytvorili pomocny modul live video acquirement.py
s triedou LiveVideo, obsluhujtcou zZivé pripojenie v redlnom c¢ase na vybrané ka-
mery z roznych prostredi. Tato trieda jednak poskytuje funkcionalitu na nahratie
usekov videa z tychto verejnych kamier, jednak spravuje ich zoznam, a zaroven
bude slizit hlavnej triede, v ktorej sa aplikuji algoritmy na video, aby sme ich

vedeli nasadit priamo na zivy prenos.
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Obr. 2.7: Ukazka videa american crossroad _traffic

Pomocou triedy LiveVideo sme zhotovili 4 zaznamy, na ktorych budeme testovat
rozne metody zlepSenia. Na zédzname american crossroad traffic (vid ukazku
2.7) je kolona aut stojacich privratene ku kamere, kym v opa¢nom smere pradi
od kamery premévka. Toto video mé rozlisenie 800 x 450 pixelov a v najbliz-
Som bode s auta asi 10 metrov vzdusnou vzdialenostou od kamery. Vzhladom
na nizku kvalitu zaznamu, ktory ani nie je origindlne vyhotovovany za tcelom
monitorovania bezpecnostnym systémom a identifikdcie 0oso6b a vozidiel, nepred-
pokladame, Ze sa ndm podari zaznamenat evidenc¢né ¢isla vozidiel. Napriek tomu
sa na to mozeme sustredit, pretoze uz malé obohatenie informacie moze vyvratit
vyskyt, alebo zvysit pravdepodobnost vyskytu vozidla s danou Statnou pozna-
vacou znackou v danom case na danom mieste. Nizsie rozliSenie nez na beznych
bezpecnostnych kamerach tiez nie je irelevantné, kedZe staci, aby bola kamera s

vy$8im rozliSenim umiestnenéd dalej od pozorovanych vozidiel a efekt (rozliSenie

vizuélnej informécie) by bol rovnaky.

Zaznam dutch _street sunset (vid ukazka 2.8) bude vyzvou v inom ohlade nez
rozliSeni. Ide o zaber ulice v obytnej zéne, po ktorej prejde auto, priblizujtce sa
a vzdalujuce sa od kamery. Tento zéznam v rozliSeni 1280 x 720 pixelov je vSak
vyhotoveny pocas zapadu slnka pri jasnej oblohe. Slnko je zachytené v l'avej Casti
obrazovky a ukazuje obrovsku limitaciu dynamického rozsahu. Na zabere je cela
ulica, privratené tienistou stranou, velmi tmava, zatial ¢o obloha je presvetlena

zapadom slnka.

Na zazname german marketplace eve (vid ukazka 2.9) je z vysky zhruba pia-
teho nadzemného podlaZia zachytené namestie, na ktorom sa pohybuju ludia, z
toho jeden ¢lovek prejde skrz na bicykli. Ide o vecernti scénu, kde casti names-

tia su zaliate svetlom pouli¢nych lamp, zatial ¢o iné Casti st podstatne tmavsie.
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16/04/2024 19:16:54
[HD_Webcam WSG

Obr. 2.8: Ukazka videa dutch street sunset

VzhTadom na rozlisenie 800 x 600 pixelov a vzdialenost od pohybujucich sa osob,
nie je Sanca rozpoznévat tvare, bezohladu na sofistikovanost algoritmu. Nemiesto

toho sa zameriame najma na rozoznatelnost detailov vo videu.

SULEIERIGE ) Tl S Y= L

Obr. 2.9: Ukazka videa german marketplace eve

Zaznam strba_snow fog (vid ukazka 2.10) v rozligeni 1280 x 720 pixelov ne-
obsahuje Ziadne pohybujtice sa objekty, avSak samotna kamera sa pomaly otaca
pozdlz horizontéalneho obliku. Toto video je zaujimavé z toho hladiska, Ze je na
nom Sportovy areal zachyteny v hmle a snehu. Toto je poveternostny scenar,

ktory je bezny v zimnych mesiacoch, no nie v mesiacoch pisania prace. Preto



22

KAPITOLA 2. CIELE A METODIKA PRACE

Obr. 2.10: Ukéazka videa strba_snow _fog

sme si vybrali tento areal na otestovanie spravania a pripadnych nedostatkov

algoritmov v takychto Specifickych, no nie neobvyklych podmienkach.

Okrem nahranych videi, budeme vediet testovat aj pristup k tymto a zopar dalsim
streamom v realnom case, a zlepSovanie kvality ich zdberov bez spdsobenia omes-
kania a signifikantného vypadku nespracovanych zaberov. Medzi d'alsimi kame-
rami, na ktoré sa nam podarilo pomocou OpenCV pripojit, je napriklad kamera
na plazi v Brazilii, situovana pred plastovymi stolami a stolickami v popredi pa-
liem, alebo kamera na malom lokélnom letisku, v Spojenych Statoch Americkych,

obsluhujicom velké mnozstvo malych motorovych lietadiel.

Problémom, ktorému ale ¢elime, a ktory sa ndm nepodarilo vyriesit, je nizka
frekvencia snimok za sekundu ziskanych po pripojeni sa na vzdialené kamery cez
Python. Na webstrankach, kde tieto scenérie mozno sledovat nazivo, je pocet
snimok za sekundu vyssi, nez k akému vieme pristupovat v ramci néasho prog-
ramu. Hlasena hodnota poc¢tu snimkov za sekundu prenasaného videa je vsak po-
vodna, nezodpovedajica snimkam prijatym na nasom konci, a teda tychto menej
snimok naskladanych do zaznamu s rovnakou frekvenciou zapri¢inuje zrychleny
chod nahraného videa. Vzhladom na podstatu testovanych algoritmov vSak nejde

o kriticky nedostatok.

2.3 Navrh testovacieho programu

Implementa¢nym jadrom tejto prace bude program, pomocou ktorého budeme moct na

testovacie vided aplikovat rozne zlepSovacie algoritmy, kombinovat ich, a porovnat ich

vysledky v subjektivnych (napr. vizualny posudok) a objektivnych (napr. ¢as aplikacie
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prepocitany na jednu snimku v zéavislosti od jej rozliSenia, alebo jeden pixel, pripadne

inych metrik) mierach.

2.3.1 VoI'ba programovacieho jazyka a kniZnic

Tento program bude napisany v programovacom jazyku Python, verzia 3.12. Rozhodli
sme sa tak preto, lebo pre Python existuje solidna paleta open-source kniznic, ktoré
pontukaju rozsiahle schopnosti v oblasti prace s obrazom a digitalnou informéciou, a
majui efektivne implementovanych mnozstvo funkcii a algoritmov relevantnych pre nasu
pracu. Medzi pouzité kniznice. bude okrem vstavanych modulov a modulov prevzatych

z githubovych stranok algoritmov, patrit:

e OpenCV, verzia 4.9, je Intelom vyvijana open-source kniznica obsahujica viac

nez 2500 algoritmov v oblasti pocitac¢ového videnia,

e NumPy, verzia 1.26, poskytuje infrastruktiru pre pracu s vektormi a maticami

(ktorymi je digitalny obraz reprezentovany), a funkciami nad nimi definovanymi,

e PIL (Python Imaging Library), verzia 10.2.0, je open-source kniznica sliziaca na

manipuléciu s digitalnym obrazom,

e PyTorch, verzia 2.2.1+cpu, je kniznica strojového ucenia zalozend na kniznici
Torch.

Hoci jazyk C++, s ktorym taktiez funguje kniznica OpenCV, je vSeobecne rychlejsi
nez Python, kedZe je kompilovany, a teda transformovany priamo do strojového kodu,
OpenCV v Pythone je len wrapperom nad originalnym kédom v C++. Kombinuje tak
rychlost C++ a jednoduchost Pythonu. Rozdiel v rychlosti behu OpenCV algoritmov
medzi C++ a Pythonom je obvykle menej ako 1%, a v najhorSom pripade, pre zakladné
funkcie je uvadzany ako menej nez 4%. Tato tvaha je dolezita kvoli tomu, Ze praca s
obrazom je v8eobecne velmi vypoctovo narocné, o to viac, ked sa pozrieme napriklad
na hlboké neurénové siete nad obrazovymi datami a budeme ich chciet vyuzit na upravu

zdberov vo videu.

2.3.2 Porovnavanie vysledkov

e Pri algoritmoch, neporovnavajuicich rozliSenie pévodného a upraveného zaznamu,
si tieto videa zobrazime paralelne v jednom rozdelenom okne, bikubickou inter-

poléaciou naskalované tak, aby toto okno zaberalo celd obrazovku monitora.
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e Pri algoritmoch zameranych (aj) na rozliSenie, sa zameriame na taku ¢ast obrazu,
ktora po preskalovani zaberie zhruba polovicu monitora, aby bolo mozné najjed-
noznacnejsie porovnat vysledok s preskalovanim rovnakého vyseku na rovnaku

velkost inou formou.

Na zobrazovanie videi vytvorime prehravac¢, ktory dokéze prehrat jedno az Styri
vided na jednom monitore naraz, a to tak, aby maximalizoval priestor, ktory tieto vi-
dea vypliaja, v prospech jednoduchsieho vizualneho porovnania kvality. Ak nebudeme
chciet videa o rovnakej velkosti Skalovat, k dispozicii budi aj sesterské metody, ktoré
dodrzia pri prehravani povodné rozliSenie. Tento prehravac taktiez umozni tieto kolaze
paralelne beziacich videi ukladat v nejakom zo $tandardnych formatov ako mp4 alebo
avi.

Zaroven do programu zahrnieme checkpointy, v ktorych bude zaznamenany c¢as od
spustenia programu, aby sme vedeli vyhodnotit a porovnat ¢asovi naro¢nost jednotli-
vych procedtr. Program bude tiez obsahovat zabudovant infrastruktiru umoziujicu

dostatocne rychle procediry aplikovat v redlnom ¢ase na zivé zaznamy z online kamier.

2.3.3 Aplikacia algoritmov

Kazdy z testovanych algoritmov bude implementovany v samostatnej metode, ktora
bude umozinovat nastavenie jeho parametrov (ak nejakymi disponuje) pri jej volani.
Vstupom do tychto metoéd aj vystupom z nich bude video, takze bude mozné takto ap-
likaciu algoritmov retazit. Okrem toho pre algoritmy aplikované na zédbery samostatne,
vacsinou tie, Specializujice sa vSeobecne na zlepSovanie nejakej z metrik kvality digi-
talneho obrazu, ktoré sme si zaviedli v prvej kapitole, vytvorime metody, ktoré buda
tieto procedury aplikovat len na jeden vstupny zaber a vracat tento zaber upraveny. To
sa nam bude hodit, ked budeme chciet aplikovat kombinéciu zlepSovacich algoritmov
zaber po zabere, napriklad pri spractivani videa v redlnom case. Nastavenia parametrov

tychto algoritmov budu mat globalnu posobnost a menitelnost.

2.4 Testované algoritmy

Otestujeme relevatné algoritmy, ktoré st obsiahnuté v open-source knizniciach, alebo
ktorych kod je zverejneny na internete. Pokial je nasadenie algoritmu komplikované,
budeme pracovat len s takymi kédmi a kniznicami, ktoré maju prehladni dokumen-
taciu v anglictine. Taziskom tejto prace nie je vyvoj a zavidzanie procedir na zéklade
teoretickych zakladov, je nim pouzitie a porovnanie Sirokého mnozstva metod v do-
méne bezpec¢nostnych kamier. Taktiez tym padom opomenieme experimentalne névrhy
algoritmov testovanych len na akademickej pode, bez implementécie pouzitelnej v re-

alnej prevadzke na vlastné ucely, napriek tomu, ze sme takéto algoritmy spomenuli v
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prvej kapitole, kedZe predstavuju zaujimavé nové moznosti, ktoré pri rychlosti vyvoja
technologii digitalneho obrazu mozu byt uz v dohladnej dobe jednoho az péar rokov
zavadzané do prevadzky.

Nestastnym, no pochopitelnym faktom, ktory znizuje strop moZnosti tejto préce,
je, ze v podstate vestky najschopnejsie moderné implementécie softvérového skvalit-
novania digitalneho obrazu st v rukich globalnych technologickych spolo¢nosti, ktoré
si starostlivo strazia svoje know-how, do ktorého ziskania na vyskumnej drovni, a na-
sledne jeho vyladenia pre praktické nasadenie, investovali miliény dolarov. Open-source
algorimty, prezentované malymi univerzitnymi a nadseneckymi timami teda len tazko
dokézu byt kompetitivne proti technolégiam zabudovanym do zariadeni od velkych
svetovych vyrobcov elektroniky, medzi ktorymi panuje stav ostrej konkurencie a riva-
lity, a na ktorych sa podielalo mnohonasobne viac odbornikov s mnohonasobne vagc-
Stmi dostupnymi prostriedkami. Téato rivalita je v poslednych rokoch najvéicsia na trhu
smartfonov, kde spolocnosti ako Apple, Samsung, Huawei, Xiaomi a dalsie dokazali
vyvinut pre svoje kamerové sety v telefénoch softvér, ktory silou dodatocéného spra-
covania ¢asto dorovnava dedikované digitalne fotoaparaty a zrkadlovky napriek tomu,
ako velmi st znevyhodnené fyzikalnymi limitmi niekolkonasobne mensej fotografickej
aparatury. Toto plati aj v porovnani s dedikovanymi kamerami, o to viac, ked sa zaobe-
rame bezpecnostnymi kamerami, ktoré st jednak cenovo znac¢ne limitované na trovni
individualneho zariadenia, a zaroven na trovni spolo¢nosti, kedZe toto odvetvie nie je
dostatocne ziskové na to, aby si vyrobcovia bezpecnostnych kamier mohli dovolit vyvoj
softvérov dodato¢ného spracovania, aky si moézu dovolit popredni vyrobcovia smartfo-
nov. To nas vSak neodradza, prejdime si teda algoritmy, ktoré dokazeme implementovat

v tejto praci:

2.4.1 Zaostrenie obrazu

Pri zaostrovani obrazu vyuzijeme dve metody:

e Aplikaciu Laplaceovského hranového filtra, kde otestujeme roézne matice, ktorych

prikladanim ku kazdému pixelu a jeho okoliu zvyraznime hrany v zabere.

e Zaostrenie odé¢itanim rozmazaného obrazu, kedy si najprv vytvorime koépiu za-
beru, ti rozostrime Gaussovskym rozmazanim a 0.X nésobok tohto rozostreného
obrazu od¢itame od 1.X nasobku poévodného obrazu, aby sme zachovali rozsah in-
tenzit, pricom vyskasame rozne hodnoty X, ako aj rozne hodnoty okolia a strednej

odchylky pri rozmazéavani.

Obe metddy su vseobecne dlho zname a pouzivaji sa pri zaostrovani digitalnych obra-

zov, bez ohladu na doménu. Nasadzat ich teda budeme snimku po snimke a uvidime,
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Obr. 2.11: Ukazka vysledku odstraiiovania Sumu nelokalnym priemerovanim z ¢lanku
[5]. Nalavo je povodny obraz, uprostred obraz zaSumeny Gaussovskym Sumom a na-
pravo je obraz po aplikécii algoritmu. V&imnime si, Ze tato fotografia je velmi vhodné
na jeho nasedenie, pretoze obsahuje vela opakujucich sa ¢asti, priemerovanim medzi

ktorymi mozno spolahlivo odstranit Sum.

aky efekt buda mat na vided z bezpec¢nostnych kamier cez den, v noci, a v roznych

inych podkladovych atributoch kvality.

2.4.2 QOdstranenie Sumu

Neziaducim efektom pri videu z bezpec¢nostnej kamery by bolo, keby sme pri snahe
odstranit Ssum rozmazali obraz vyhladzovanim a nevyberane ho tak zbavili informa-
cie. V naSej oblasti je totiz zachytend informaécia prioritou, a uhladeny vzhlad videa
je az sekundéarny - ani nie tak pre Tudskych pozorovatelov, ako pre dalsie algoritmy,
ktorych vysledok nasadenia by mohol Sum znehodnotit, ako je napriklad velmi realne
pri metédach vyuzivajicich hlboké neurriové siete, ktoré v zaujme lepSieho vysledku
preferuju ¢o najmenej rusivej Sumovej informacie nesuvisiacej s kontextom. Preto po-
uzijeme metodu odstranovania Sumu nelokalnym priemerovanim [5]. Jej algoritmus je
implementovany v OpenCV a pozera sa na obraz po malych vyrezoch o velkosti ré-
dovo v pixeloch, pre ktoré hlada vyrezy rovnaké alebo takmer rovnaké inde v obraze
(pre lepsiu predstavu vid obr. 2.11), a nasledne priemeruje hodnoty ich pixelov, aby
tak z nich odstréanil jedineény Sum. Tato metdda je znacne pomalSia nez jednoduché
metody vyhladzujice obraz ako napriklad Gaussovské rozmazanie, no kompromituje
informéaciu obsiahnuta v zédbere do podstatne nizsej miery. Jej sila zaroven rastie, ak
vyuzijeme k vyhladavaniu podobnych ¢asti obrazu aj d'alsie snimky, ktoré mame v pri-
pade videa k dispozicii. To je obzvlast prinosné v pripade bezpecnostnych kamier, kde
nés Casto zaujima prave informéacia nevyskytujica sa nikde inde na zabere - napriklad
tvar konkrétneho cloveka - avSak obsiahnuta na dalsich zaberoch, a to s vysokou prav-

depodobnostou nezasumena, alebo aspon zasumena v inych bodoch inou intenzitou.
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2.4.3 Zlepsenie kontrastu

O zlepSenie kontrastu v testovacich videach (tam, kde sa to bude javit ako prinosné), sa
pokusime pomocou ekvalizacii histogramu. Budeme ich aplikovat na jednotlivé snimky
individualne. V $pecifickych pripadoch, napriklad pri rozsvieteni reflektorov auta na
inak pomerne tmavom videu, moze byt z hladiska zachovania percepcie nemennosti
okolia prinosné posudzovat jasnost vramci rozsahu intenzit naprie¢ celym videom, nie
len v ramci daného zaberu, av8ak z hladiska rozoznania informacie, ¢o je pre doménu
bezpecnostnych kamier kIi¢ovym, by §lo o degradaciu. Pri prieskume sicasného vy-
uzivania ekvalizacie histogramu vo videach sme sa vSak na internete stretli len s indivi-
duélnou aplikiciou po snimkach, a to aj pri pristupoch navrhovanych odbornou obcou
[30].

KedZe pracujeme primérne s obrazmi reprezentovanymi na trovni farebnych ka-
nalov (RGB), a kontrast nutno posudzovat vzhladom na globalne hladiny intenzity
jednotlivych pixelov, teda uniformne, bez ohl'adu na farebny kanél, pouzijeme format,
ktory oddeluje komponent jasnosti do separatneho kanalu, na ktory budeme ekvali-
zaciu histogramu aplikovat, zatial ¢o farbu uschovame v kanaloch, ktoré nezmenime.
Takymto forméatom je napriklad YCbCr, vyuzivajuci zlozku Y na reprezentaciu jasu, a
zlozky Cb a Cr na reprezentaciu modrého a ¢erveného chrominanéného komponentu.

Praktickym nedostatkom zakladnej ekvalizacie histogramu v mnohych scenaroch
st pripady, kedy pri redistribicii sice zvyraznime jasové rozdiely vo vac¢sine obrazu, no
zlejeme ich v nejakej podcasti, ktora pritom pre nas nesie velky vyznam z hladiska
poskytnutej uzito¢nej informacie. Tento jav by sa mohol manifestovat napriklad pre-
svetlenim tvéare nasvietenej umelym zdrojom svetla, kedy by klasicka ekvalizécia histo-
gramu vyuzila va¢sinu z rozsahu zobrazitel nych jasov na reprezentaciu tmavého okolia.
Preto vyuzijeme aj metoédu adaptivnej ekvalizacie histogramu, ktora posudzuje zaber
po blokoch (disjunktnych, a to rddovo o uhlopriecke v spodnych desiatkach pixelov,
pripadne jednotkach pixelov) a ekvalizuje pre ne histogramy nezavisle. Aby pri tomto
nedochadzalo k zvyrazneniu Sumu, pre histogram kazdého bloku plati limit kontrastu,
ktory ak nejaké pixely prekrocia, si ich intenzity pred samotnou ekvalizaciou orezané,
a prevysSujice hodnoty intenzity uniformne prerozdelené medzi pixely prisluchajtuce k

inym intenzitam.

2.4.4 QOdstranenie rozmazania

Odstranenie rozmazania spésobeného pohybom objektov v scéne alebo pohybom sa-
motnej kamery, ak ide o taku inStalaciu, sice nema viditelny vyznam z hladiska sle-
dovaného videa, kedZe Tudsky mozog si informacie z jednotlivych zaberov spaja do
suvisle definovaného obrazu, ale ma vyznam z hladiska individuélneho zaberu, ktory

moze byt niekedy nutnym k identifikdcii pohybujtcej sa osoby ¢i vozidla, najmé pri
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retrospektivnom vySetrovani, a tieZ méa vyznam v ramci predspracovania pre dlaSie
algoritmy, obzvlast pre neurénové siete.

Hoci existuju aj neurénové siete trénované specificky na tlohu odstraiiovania rozma-
zania fotografie, my si vyberieme matematickd metodu, a to dekonvoliciu vo frekvenc-
nom spektre, pricom budeme predpokladat, ze k rozmazaniu doslo aplikaciou gaus-
sovského vyhladzovacieho filtra, a pokusime sa toto vyhladenie zvratit a dostat tak
obraz bez rozmazania. Nasadenie neurénovych sieti na tiito marginalnu tlohu, kde ¢o
najdeterministickejsie dopocitanie informécie preferujeme pred jej odhadom, by bolo
v naSej doméne pouZitia nadbytoénym, az kontraproduktivnym krokom, z hladiska
¢asovej narocnosti a nespolahlivosti odhadu unikatnych ¢t v obraze. Hoci nad postup-
nostou zaberov tvoriacich video by malo byt mozné vytvorit informovane;jsi algoritmus
odstranujuci rozmazanie jednotlivych snimok, v ¢ase pisania tejto prace neregistrujeme
ziaden vhodny pre nasu aplikiaciu. Viaceré algoritmy sa venuji odstranovaniu rozma-
zania sposobeného pohybom ¢loveka natacajiceho video kamerou drzanou v rukach,

avsak tento problém nie je dostato¢ne podobny nasmu.

2.4.5 Zvysenie rozliSenia

OpenCV poskytuje podporu pre zvySovanie rozlisenia ako matematickymi metédami,
tak za pomoci hlbokych neurénovych sieti. Z matematickych metod budeme vyuzivat
bikubick interpoléaciu. Pre vyuzitie neurénovych sieti na zvySovanie rozliSenia obrazu
disponuje OpenCV rozhranim dnn_superres so Styrmi roznymi algoritmami. Modely

ku vSetkym vieme stiahnut z ich verejnych githubovych repozitarov. Tymi st:

e EDSR (Enhnanced Deep Super-Resolution) [31]
e ESPCN (Efficient Sub-Pixel Convolutional Network) [32]
e FSRCNN (Fast Super-Resolution Convolutional Neural Network) [33]

e LapSRN (Laplacian Pyramid Super-Resolution Network) [34]

Aby sme nézorne demonstrovali schopnosti jednotlivych metéd zvySovania rozlise-
nia, budeme sa sustredit na vyrez z videa dostato¢ne maly na to, aby sme po jeho
zvadseni danym testovanym nésobitelom nepresiahli rozmery obrazovky, a nemuseli
obraz opéatovne preskalovavat, ¢im by sme kompromitovali vypovednit hodnotu porov-

nania tychto algoritmov.

2.4.6 Rekolorizacia

Velka ¢ast bezpe¢nostnych kamier si uz dnes pomaha infra¢ervenym spektrom (760 nm
— 1 mm), alebo jeho ¢astou strednych az dlhsich vlnovych dlzok oznadovanou ako termo-

vizne spektrum (815 pm). Zatial ¢o vidite[ného svetla je v neosvetlenych, alebo slabo
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osvetlenych no¢nych priestoroch tak malo, Ze na jeho zachytavanie v ¢ase behu videa
by sme potrebovali minimalne kameru s mimoriadne rozmernym objektivom (ktora by
bola drahé a v neposlednom rade napadnd), vo vlnovych dlzkach infracerveného spek-
tra vidime vyraznejSie prave to, ¢o nas pri dohladovych systémoch zaujima zdaleka
najviac. To st objekty teplejsie od ich okolia — predovSetkym ludské postavy — a ich
pohyb. Pri tejto praci sme sa stretli s dvomi hlavnymi sposobmi vyuzitia infra¢erveného

spektra.

e S paralelnym zaznamom v RGB aj v infracervenom spektre, kedy mame oba
zaznamy k dispozicii samostatne, a ziadne informécie z jedného nie st na ziad-
nej vrstve spracovania a zobrazenia prenasané do druhého. Na tato aplikaciu a
moznost kombinécie vizualnych informacii z oboch spektier a ich zvyraznenie sa

pozrieme v dalSej podkapitole 2.4.7.

e S takzvanym prisvecovanim, kedy kamera automaticky kombinuje termovizny a
RGB obraz do Sedoténového. Na rekolorizaciu tohto obrazu sa zameriame v tejto

podkapitole.

Vsetky seri6zne metody rekolorizacie Sedotéonového obrazu funguji na zéklade vy-
uzitia znalosti [35], kedZe neexistuje sposob, ako spravne deterministicky premietnut
hodnoty na spektre medzi bielou a ¢iernou do farebného priestoru. Tieto znalosti moézu
byt dodané asistenciou Tudského pouzivatela na zac¢iatku behu algoritmu, napriklad
formou vol'by farebného odtiena pre vybrané ¢asti obrazu, alebo mozu byt extraho-
vané z nejakej databazy exemplarnych obrazov ¢i vzoriek, alebo mozeme vyuzit hlboké
neurénoveé siete, ktoré po prvotnom kvalitnom natrénovani modelu uz nepotrebuji pre-
hladavat mnozstva dat v snahe ziskat referenciu k spractvanému zéaberu. Sedoténovy
obraz, ktory je vysledkom prisvecovania, sa pokusime rekolorizovat bez nutnosti Tud-
skej asistencie, ktora by v oblasti pouZitia bezpecnostnych kamier mohla byt I'ahko
vnimané ako zna¢néa nevyhoda systému, kedze by kladla zvySené naroky na kvalifiko-
vanost pracovnikov obsluhujucich dohladovy systém. Napriek existencii algoritmov vy-
uzivajucich pre referenciu obraz z tej istej kamery zhotoveny za denného svetla [4], [36],
takéto metody zatial nevieme otestovat, pretoze k nim nie je poskytnuty zverejneny
kod, a pokusat sa o implementaciu experimentélnych konceptov nie je v moZnostiach
rozsahu tejto prace, ktora cieli na vyssiu kvantitu dalsich metrik, o ktorych zlepSenie
sa snazime. Na kolorizaciu preto vyuzijeme hlbokt neurénovi siet z projektu DeOl-
dify. Napriek tomu, Ze zverejneny kod je zamyslany primarne na pouZitie s prostredim
Jupyter Notebook, ktoré vyuzivajua aj vsetky ukazky, manualy a dostupna dokumenta-
cia na internete, pokusime sa releventné metody tohto projektu zapracovat priamo do
vyvijaného programu, tak ako aj ostatné z algoritmov, ktoré planujeme zahrnit do tes-

tovania. Vyhoda projektu DeOldify oproti inym je, ze mé aj metoédu Specializovani na
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rekolorizéciu videa, nie len jednotlivych zaberov individuéalne, ¢o by bolo jednak menej

efektivne a tiez by vzhladom na neurcitost problému mohlo viest k nekonzistencii.

2.4.7 Detekcia pohybu pomocou IR /Termo spektra

Pri kamerovych systémoch, ktoré vyhotovuji a paralelne ukladaja zaznam aj v RGB
spektre, aj v infracervenom (termoviznom) spektre, vieme toto spektrum vlnovych
dlzok vicsich od viditelného svetla vyuzit na obohatenie RGB zaberov o informéciu.
Tuto informaciu ale mézeme rovno posunut do kontextuélnej domény a vyuzit ju na
detekciu pohybujucich sa objektov. To by sice bolo mozné aj vo farebnom spektre, na-
priklad subtrakciou pozadia, ktoré je pri stacionarnych bezpecnostnych kamerach (¢o
je vicsina) statické, ale len dokym by sme mali sledovany priestor dostato¢ne osvet-
leny. V tme by schopnost detekcie vyrazne upadala - pohyb by bolo tazké odfiltrovat
od Sumu, ak by vobec bol viditelny. Vdaka teplote vy$Sej oproti svojmu okoliu (ak
odmyslime tropické noci v $pecifickych koncinéch, no aj tam by sme dokazali vidiet
kontrast ¢loveka voéi okoliu vyhriatému na akukolvek teplotu, kedZe zachytené tepelné
ziarenie pohybujtcej sa postavy je rozne v zavislosti od termalnej izolacie oblecenia na
roznych Castiach tela, a obvykle neprekrytia tvare), v8ak dokaZeme detekovat pohyb
Tudi v IR spektre za akychkolvek svetelnych podmienok.

KedZe rozlisenie videa z objektivu snimajiceho v infra¢ervenom spektre je obvykle
nizsie, nez z objektivu snimajuceho vo farbe a casto nepokryva ani jeho celé zorné
pole, nasou tlohou bude najprv sparovat a naskalovat infracerveny, respetktive v pri-
pade nasej kamery Annke T200 termovizny obraz, s vysekom z RGB obrazu. V ramci
tejto prace si zvolime jednoduchu a spolahlivii metodu, kedy na tuvod jednorazovo
poziadame pouZivatela, aby v okne, na ktorom je po jednej snimke z kazdej kamery
z rovnakého ¢asu, vyznadil najprv Tubovolny bod v termoviznom obraze (taky, aky
Tahko jednoznaéne oznaci aj v druhom spektre), potom tento isty bod vyznacéi v RGB
obraze, a to isté spravi pre eSte jeden iny I'ubovolny bod. Na§ program automaticky
najde transformaciu, ktord potom aplikuje na informéaciu v termoviznom obraze, aby
ju zobrazil v RGB obraze na rovnakom mieste relativne k objektom v scéne. Touto
informaciou budu kontiry objektov, extrahovanych subtrakciou pozadia, teda odcita-
nim po sebe iducich zaberov v bindrnom formate, ktoré nam umoznia vidiet vsetky

pohybujuce sa objekty s farbou odlignou od ich pozadia (teda predovsetkym l'udi).



Kapitola 3
Vysledky a vyhodnotenie prace

V tejto kapitole si porovndme tuc¢inok implementovanych metoéd a ich kombinacii na
testovacie videa a Specifika scenarov, ktoré tieto videa zachytavaji. Taktiez porovname
ich ¢asovi naroc¢nost. Hoci sa budeme zmienovat aj o celkovom ¢ase behu algoritmu
alebo ich kombinacii nad celymi konkrétnymi videami, tak ako su aj tieto algoritmy
stopované, od zaciatku jeho aplikicie na prvy zaber po jej dokoncenie na poslednom,
nezaratavajuc ¢as potrebny na okolité vSseobecnejSie pracovné ikony vykonévané prog-
ramom, hlavnou jednotkou ¢asovej naroc¢nosti by z intuicie mal byt ¢as potrebny na
spracovanie jednoho zaberu, a teda celkovy ¢as behu algoritmu vydeleny poc¢tom zabe-
rov. AvSak nesmieme zabudat, Ze na ¢as behu algoritmu vplyvaja aj rozmery samotnych
zaberov, kedZe pratkicky vSetky z operacii si aspon v niektorej zo svojich faz vykoné-
vané po individuéalnych pixeloch alebo ich zoskupeniach. Rolu hra aj mnozstvo dalsich
faktorov, no tie uz s Specifické pre scénu a informaciu individualnych videi a nedaja
sa parametrizovat tak, ako pocet zaberov a pocet pixelov, a tiez je ich vplyv na cas
obvykle mensi v porovnani s ¢asovymi a priestorovymi atribatmi videi. Preto si ako

jednotku ¢asovej naro¢nosti algorimtu zavedieme mikrosekundu na pixel (us/px).

V predoslej kapitole 2 sme si predstavili zozbierané videa na ktorych budeme metody
testovat, aj kategorie tychto metod podla toho, na aky aspekt zvyraznenia informécie
pozorovatelovi alebo dalsiemu algoritmu pri predspracovani mierime. KedZe vi¢sinou
najvyssiu mieru celkového zlepsenia dosiahneme kombinovanym nasadenim viacerych
metod, kde casto bude aj znacne zalezat na ich poradi, nemé velmi vyznam postu-
povat pri prezentovani vysledkov po jednotlivych metédach tak, ako boli predstavené
v predoslej podkapitole 2.4. Postupovat po jednotlivych videadch by sice nepostradalo
vyznam, avSak mohlo by vniest dojem Specifickosti a neuniverzalnosti, a bolo by ob-
tiaznejsie sledovat trendy a opakujuce sa situacie a efekty nezavisle od konkrétnych
scén. Budeme teda postupovat po akychsi scenaroch. Prikladom scenaru je napriklad
stredne vzdialeny ¢lovek, pohybujici sa v tme, alebo scéna s vysokym dynamickym

rozsahom. Jednoducho, urcité vyzvy, s ktorymi sa bezpecnostné kamery mozu stretnit
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v redlnom nasadeni (samozrejme nie nutne vSetky, ale vi¢sia ¢ mensia podmnoZina).
Do tychto scenarov potom budi reprezentativne spadat testovacie videa.

Podstatnym vyzrozumenim je, Ze via¢Sina kombinécii algoritmov vo vela pripadoch
v skutocnosti nevedie k zlepSeniu a moze praveze viest k degradécii obrazu, najcas-
tejSie pridanim artefaktov. Ide teda o starostlivii volbu spravnych mechanizmov, so
spravnymi parametrami a v spravnom poradi aplikacie podla toho, ¢o je nasim cielom,
a teda potencialne, ¢o sme v jeho prospech ochotni obetovat - napriklad realistickost
obrazu. Mnohé zo zlepSeni, ktoré sme dosiahli, by sa nemuseli javit ako zlepSenia z hl'a-
diska umeleckého dojmu a odrézania reality ¢o najblizSej percepcii [udskym zrakom,
aké sa snazime dosiahnut pri natacani videf na vlastné tcely alebo v kinematografii.
Ide o zlepsenia cieliace na zvyraznenie informacie pre ucely identifikacie osob, objektov
a Cinnosti v sledovanom priestore. To je totiz tloha bezpecnostnych kamier. Nettzime
po realistickej tme ani plynulosti obrazu na tkor informécie o obsahu priestoru. Nezna-
mené to ale ani to, Ze tplne ignorujeme rusivé efekty aplikicie algoritmov, kedze ich
koncovym respondentom je najcastejsie ¢lovek, ktory musi z obrazu dané informacie
komfortne prijimat, a premietnut si ich do realistického mentélneho obrazu kontextu
scény. V niektorych pripadoch nakoniec déjdeme k zisteniu, najmé za dobrych svetel-
nych podmienok a pri kvalitnej kamerovej aparatire, ze najlepsi obraz je z péovodného
videa, a akékol'vek z uvazovanych algoritmov st kontraproduktivne. V zmysluplne vel-
kej ¢asti pripadov je to v8ak opacne, a doslo aspon k malému zlepsSeniu kvality zédberov,
ktoré moze byt rozhodujice pri potvrdeni ¢i vyvrateni dopytovanych skuto¢nosti zdo-

kumentovanych videom. Pozrime sa teda na konkrétne ukazky...

3.1 Identifikdcia osoby za dobrych svetelnych pod-

mienok

Za denného svetla, pripadne v kompletne umelo osvetlenom priestore, obvykle zébery
scény neobsahuju miesta, ktoré by vyzadovali algoritmické pozdvihnutie informaécie.
Kontrast medzi jednotlivymi objektmi a ¢rtami je dostato¢ny, ako vidime na obrazku
3.1, kde sme porovnéavali originalne video s ekvalizaciou histogramu a adaptivnou ekva-
lizaciou histogramu v dvoch réznych nastaveniach, a sice doslo k prisvieteniu tienistych
miest, ako napriklad pri stene prizemia budovy napravo, ale je otazne, ¢i toto zlepse-
nie bolo nutné a stoji nam za zhorsenie celkovej prehladnosti neprirodzene pdsobiacich
zaberov. Taktiez na tvari autora tejto prace v popredi zaberu je vidno, ze zvySenie kon-
trastu neprinieslo obohatenie vo veci vnimaného detailu, kedZe ten uz bol dostato¢ny.
Demonstrovali sme vsak, ze dokdzeme eliminovat vplyv tiehov v scéne bez kompromi-
tacie informécie, takze pre isté prostredia moze byt ekvalizécia histogramu prinosna.

K zvyrazneniu detailu moze prispiet zaostrovanie, ako moézeme vidiet na obrazku
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Obr. 3.1: VIavo hore: originalny zaber, vpravo hore: ekvalizécia histogramu (v YCbCr
forméate), vlavo dole: adaptivna ekvalizacia histogramu s okolim 8 pixelov a jeho limi-
tom kontrastu 40, vpravo dole: adaptivna ekvalizacia histogramu s okolim 4 pixelov a

jeho limitom kontrastu 20

3.2. Za jemnejsiu formu zaostrovania mozeme povazovat aplikdciu odé¢itania obrazu
rozmazaného gaussovskym filtrom, v nasom pripade berieme 1.5 nasobok hodnoty pi-
xelov v povodnom obraze a odpoc¢itame 0.5 nasobok hodnoty v rozmazanom obraze s
gaussovskym filtrom rozmerov 3 x 3. Agresivnejsi u¢inok, ak je preferovany, dosiah-
neme aplikdciou hranového filtra, v nasom pripade v podobe [0, -1, 0], |-1, 5, -1], [0, -1,
0]]. Na potlacenie rusivého prilisného zvyraznenia strukttr v okoli bez znehodnotenia
unikatneho detailu (ako na l'udskych tvarach, je efektivne pred zaostrenim hranovym
filtrom najprv aplikovat odstranenie Sumu nelokdlnym priemerovanim. Toto sa javi ako
najlepsia moznost zvyraznenia detailov za denného svetla, avsak jej nevyhodou je, ze
takéto "bezstratové"(vzhladom na podstatny detail) odstranovanie Sumu je pomaly
proces, a teda nie je aplikovatelné v realnom case, len retrospektivne. Kym aplikacia
hranového filtra na jeden zéber o velkosti 100 x 100 pixelov (vysek, no skalovanie
je linearne) zabrala len priblizne 150-200 us, ¢ize 0,015 - 0,02 us/px, a zaostrovanie
od¢itanim rozmazaného obrazu (tiez s linearnym skalovanim) 200-300 us, ¢ize 0,02 -
0,03 us/px, takze nie je problém ich aplikovat pri frekvencii zivého prenosu 30 alebo aj
viac snimok za sekundu, odstranovanie Sumu nelokdlnym priemerovanim si vyziadalo
zhruba 345000 s aj na takomto malom vyseku, ¢ize 34 us/px. Je mozné ho bez citelnej
straty kvality zrychlit zniZzenim poctu okolitych zédberov, v ktorych hladame referenéné

vyseky pre priemerovanie (tu sme vyuzivali 2 zabery pred a 2 po), no toto zrychlenie
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zodpoved4 poctu prehladavanych zaberov, a teda nedokazeme dosiahnut hodnotu pod

6 us/px.

Obr. 3.2: VIavo hore: originalny zaber, vpravo hore: zaostrenie od¢itanim rozmaza-
ného obrazu, vlavo dole: zaostrenie hranovym filtrom, vpravo dole: odstranenie Sumu

a nasledné zaostrenie hranovym filtrom

Dalsie zlepSenie detailu dosiahneme pouzitim predtrénovanych neurénovych sieti
na zvysenie rozliSenia. Porovnaniu implementovanych modelov sa budeme venovat v
dalsich podkapitolach, no ukazku prace najkvalitnejSej, no aj ¢asovo najnaroc¢nejsej z
nich - EDSR, méZzeme vidiet na obrazkoch 3.3, kde kombinujeme zaostrovanie a EDSR,
a 3.4, kde este pridavame ekvalizicie histogramu. Je nutné podotknit, ze narozdiel od
predchadzajicej ukazky, originalny zaber tu nie je bikubicky interpolovany (je inter-
polovany metddou najblizsieho suseda), aby sme zdoraznili dotvorenie pixelov EDSR

pri 4-nasobnom zvySeni rozliSenia. Za kombinédcie metod s najpriaznivejSim efektom
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moZeme oznacit:
e zaostrenie hranovym filtrom a nasledné zvysenie rolisenia EDSR

e zaostrenie odc¢itanim rozmazaného obrazu, nésledné zvySenie roliSenia EDSR a

ekvalizacia histogramu na zaver

Rychlost nasadenia neurénovych sieti bude analyzovana dalej v praci, je vSak nutné
zdoraznit, ze Ziaden z implementovanych modelov nie je dostato¢ne rychly na nasadenie
v realnom c¢ase, naopak vSetky implementované kombinécie zaostrovania a ekvalizacii

histogramov st, minimélne pre videa do velkosti 1280 x 720 pixelov.

3.2 Identifikdcia osoby za nepriaznivych svetelnych

podmienok

Identifikaciu osoby v tme sme testovali:
e Bez akejkolvek pomoci v spektre vlnovej dlzky mimo viditelného svetla.
e Na zaberoch z kamery Hikvision s infra¢ervenym prisvecovanim.
e S vyuzitim termovizie k detekcii pohybujicej sa osoby.

Na videu Annke RGB dark sme otestovali 34 kombinécii algoritmov, hlavne ale na
vyreze o velkosti 400 x 200 pixelov, zachytévajicom autora prace v tmavej ¢asti scény
preskakujtiiceho zabradlie a otoc¢iaceho sa tvarou do kamery. Pri ekvalizacii histogramu,
sme narazili na problém zmieneny v podkapitole 2.4, kedy tvar osoby (a na videu k tomu
biele tricko) predstavuju len maly zlomok pixelov scény, no zaroven si najsvetlejsimi
Castami scény. Ekvalizdcia histogramu ich pixely potom zleje do mensieho rozpétia
intenzit, aby dosiahla zlepSenie separacie intenzit v tmavej vacsine scény. K eliminacii
tohto problému by mala viest adaptivna ekvalizécia histogramu, ktoré zvysuje kontrast
na lokalnej baze. Problémom pri objektoch v takto nizkom rozliSeni st velmi silné
artefakty, ktoré nou vzikni a rozbiju akusi integritu a plynulost obrazu. Ani jeden z
implementovanych sposobov ekvalizacii histogramu tak nie je vhodny v ¢astom scenari,
kedy sa o Cosi svetlejsia osoba pohybuje v tmavom priestore v strednej vzdialenosti od
kamery, ako je vidiet na ukazke 3.5, kde sme ekvalizicie nasadili po odstraneni Sumu a
v kombinéacii s oboma metdédami zaostrovania.

Pri zvySovani rozliSenia tohto vyrezu si porovname schopnosti a ¢asovi naroc¢nost
vSetkych implementovanych modelov neurénovych sieti: EDSR, ESPCN, FSRCNN a
LapSRN, a to pri 2-nasobnom zvic¢Seni (na inom videu si ich porovname aj pri 4-
nasobnom). Ako vidime na zébere 3.6, rozdiely su len tazko badatelné, minimalne a v

podstate zanedbatelné.
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Obr. 3.3: VIavo hore: origindlny zédber v pévodnom rozliSeni, vpravo hore: 4-nasobné

zvySenie rolisenia EDSR, vlavo dole: zaostrenie hranovym filtrom a nasledné 4-nasobné
zvySenie roliSenia EDSR, vpravo dole: zaostrenie odéitanim rozmazaného obrazu a

nasledné 4-nasobné zvysenie rolisenia EDSR

Zanedbatelnymi ale nie st rozdiely v ¢asovej naroc¢nosti pouzitia jednotlivych mo-
delov - naopak - st zna¢né. Nasadenie EDSR - modelu, ktory sa nam vo vac¢sine aplikacii
ukézal ako najschopnejsi, no len s minimalnym, ¢asto zanedbatelnym, no stale niekedy
potencialne rozhodujicim rozdielom - trvalo len na spominany vysek o rozmeroch 400
x 200 pixelov v priemere 18835037 s na kazdu snimku, teda 235 us/px. Pouzitie tohto
modelu je mozné len retrospektivne a pri opodstatnenych pripadoch. Pre predstavu,
na zvysenie rozliSenia 135 snimok tohto podobrazu, teda 4 a pol sekundy videa, algo-
ritmus potreboval 2543 sekiind. Na rovnakom tseku videa to zabralo modelu ESPCN
8,85s, teda 65555 us na zaber a 0,82 us/px. V pripade FSRCNN to bolo 19,57s pre
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Obr. 3.4: VTavo hore: origindlny zaber v pévodnom rozliSeni, vpravo hore: zaostrenie

hranovym filtrom, nasledné 4-nésobné zvysenie rolisenia EDSR a ekvalizacia histo-
gramu na zaver, vlavo dole: zaostrenie od¢itanim rozmazaného obrazu, nasledné 4-
nésobné zvysenie roliSenia EDSR a ekvalizacia histogramu na zaver, vpravo dole: zaos-
trenie od¢itanim rozmazaného obrazu, nasledné 4-nasobné zvysenie rolisenia EDSR a
adaptivna ekvalizacia histogramu na zaver s okolim 4 pixelov a jeho limitom kontrastu
20
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Obr. 3.5: VIavo hore: odstranenie Sumu, nasledné zaostrenie hranovym filtrom a ekvali-
zacia histogramu na zaver, vpravo hore: ostranenie Sumu, nasledné zaostrenie hranovym
filtrom a adaptivna ekvalizacia histogramu na zéaver s okolim 4 pixelov a jeho limitom
kontrastu 20, vlavo dole: ostranenie Sumu, nasledné zaostrenie od¢itanim rozmazaného
obrazu a ekvalizacia histogramu na zéver, vpravo dole: ostranenie Sumu, nasledné za-
ostrenie od¢itanim rozmazaného obrazu a adaptivna ekvalizécia histogramu na zaver s

okolim 4 pixelov a jeho limitom kontrastu 20

Obr. 3.6: VIavo hore: EDSR, vpravo hore: ESPCN, vlavo dole: FSRCNN, vpravo dole:
LapSRN
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predspracovanie EDSR | ESPCN | FSRCNN | LapSRN
ziadne 235.44 | 0.82 1.81 8.26
zaostrenie hranovym filtrom 210.19 | 0.66 1.84 7.56
odstranenie Sumu a zaostrenie

184.99 | 0.68 1.59 7.52
hranovym filtrom
zaostrenie odc¢itanim

187.21 | 0.66 1.68 7.56
rozmazaného obrazu
odstranenie Sumu a zaostrenie

189.09 | 0.68 1.54 7.58

odéitanim rozmazaného obrazu

Tabulka 3.1: Porovnanie ¢asov implementovanych modelov pri zdvojnasobeni rozligenia,

vV us/px

cely vysek videa, ¢ize 144962 us na zaber a 1,81 us/px . Pouzitie LapSRN nés vyslo na
89,28s celkovo, 661333 us na zaber a 8,26 us/px. Okrem toho sme zvySenie rozliSenia
v dalsich testoch kombinovali aj s predspracovanim, kde sme vyskusali obe implemen-
tované metody zaostrovania obrazu, pricom kazda z nich aj samostatne, aj na obraze
zbavenom Sumu (pred nasadenim neurénovej siete). Porovnanie rychlosti jednotlivych
modelov v zéavislostu od predspracovania sa nachadza v tabulke 3.1.

Kedze vysledky aplikacie jednotlivych modelov st si v tomto scenéri prakticky na
nerozoznanie blizke, budeme porovnéavat aplikicie dalsich algoritmov na toto video v
kombinacii s najrychlejsim z nich - ESPCN, a druhym najrychlejsim - FSRCNN. Pre-
skumali sme aj kombinécie s dalsimi, no trendy vztahujtce sa na vysledky kombinécii s
dalsimi metodami st medzi nimi rovnaké. Ako vidime na obrazku 3.7, predspracovanie
zaostrovanim hranovym filtrom vytvara nezanedbatelné artefakty aj na tvari osoby, a
to aj v kombinacii s odSumenym obrazom. Zaostrovanie od¢itanim rozmazaného obrazu
je teda preferované.

Odstranenie Sumu sa tu nepreukazalo dostato¢ne citelne prinosné na obhajenie jeho
vysokej ¢asovej narocnosti. Aj ak pouzivame k hl'adaniu refrenénych vysekov len aktu-
alny zaber, ¢as potrebny na tito operaciu vyse 23-nasobne prevysuje ¢as trvania videa,
hoci ju aplikujeme len na jeho vyrez o velkosti 400 x 200 pixelov. Jej naro¢nost tu je
teda na urovni nie mensej nez 0,7 sekundy na zaber, alebo 9,68 us/px. Preto ju v tomto
scenari nebudeme dalej aplikovat. Opacné poradie aplikicie zaostrovania, kedy obraz
zaostrime az po zvySeni rozlisenia, vzniknuté artefakty do solidnej miery eliminuje, ako
je vidiet na ukazke 3.8, a prezentuje nam tak ponuku najlepsich postupnosti zlepseni,
aké dokazeme na tomto videu pomocou testovanych algoritmov dosiahnut.

Dalsie vide spadajuce do scenara osoby pohybujtcej sa v tme, sii zaobstarané ka-
merou Hikvision s infra¢ervenym prisvecovanim a originalne st v Sedoténovej podobe.

Nasim prvym krokom teda bude ich rekolorizacia pomocou neurénovej siete z projektu
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Obr. 3.7: VIavo hore: zaostrenie hranovym filtrom + ESPCN, vpravo hore: odstranenie
Sumu + zaostrenie hranovym filtrom + ESPCN, vlavo dole: zaostrenie odéitanim roz-
mazaného obrazu + ESPCN, vpravo dole: odstranenie Sumu + zaostrenie odc¢itanim
rozmazaného obrazu + ESPCN

Obr. 3.8: VIavo hore: zaostrenie hranovym filtrom + FSRCNN, vpravo hore: zaostre-
nie od¢itanim rozmazaného obrazu + FSRCNN, vlavo dole: FSRCNN + zaostrenie

hranovym filtrom, vpravo dole: FSRCNN -+ zaostrenie od¢itanim rozmazaného obrazu
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Obr. 3.9: VIavo hore: originalny zéznam, vpravo hore: rekolorizicia, vlavo dole: reko-
lorizacia + zaostrenie hranovym filtrom, vpravo dole: rekolorizacia + zaostrenie hra-

novym filtrom + ekvalizacia histogramu

Deoldify. T4 sa ukéazala ako spolahliva a produkuje vysledky s odchylkou od realnych
farieb dostato¢ne malou na to, aby neslo len o uveritelné, ale aj o realistické dofarbenie
konkrétnej scény, no len ak mé na zaberoch zmysluplné referenéné objekty. Farby po-
sobia trochu nenaturdlnym dojmom, avsak to je zapri¢inené aj tym, Ze nejde o klasicky
Sedotonovy obraz, ale obohateny o informéaciu z infracerveného spektra. Na ukazke
3.9 vidime vysledok aplikacie rekolorizacie, a efekt naslednej aplikacie zaostrovania,
pripadne aj ekvalizacie histogramu. Prostredie, v akom je zaznam vyhotovovany, ob-
sahujuce ihli¢nata zelen tvoriacu vysoku frekvenciu striedania pixelov vysokej a nizkej
intenzity v kombinécii so zdrojmi svetla, je zna¢ne nepriaznivé pre aplikaciu ekvalizacie
histogramu.

Na vystrih z videa o rozmeroch 300 x 240 pixelov, kde autor prace podisiel blizsie
ku kamere, sme nasledne aplikovali 4-nasobné zvysSenie rozliSenia pomocou vsetkych
implementovanych modelov neurénovych sieti na to zameranych. Vzajomné rozdiely
medzi nimi boli opéat len velmi tazko badatelné, ak vobec. Toto vidiet na ukéazke 3.10.
Subjektivne sa nam v8ak ako najlepsi javil vysledok modelu LapSRN, kedZe nevniesol

do obrazu badatelné artefakty, a zaroven zobrazuje jednotlivé objekty na scéne ostro
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Obr. 3.10: Na rekolorizaciu nadvézujice - vlavo hore: EDSR, vpravo hore: ESPCN,
vlavo dole: FSRCNN, vpravo dole: LapSRN

a kontinuélne, preto pri dalsich snahach o zlepSenie tychto snimok zuzitkujeme tento

algoritmus.

V porovnani 3.11 vidime, Ze najlepsi vysledok, ostry, kontinudlny a bez artefak-
tov, sme dosiahli zavere¢nou aplikiciou zaostrovania hranovym filtrom na rekolorizo-
vané video zvacsené modelom LapSRN (lepsi, neZ pri inej forme alebo poradi aplikacie
zaostrovania). Oproti aplikacii zaostrovania hranovym filtrom na video v pévodnom
rozliseni v ukazke 3.9 je tu vidiet vyrazné zlepsnie, ked st vdaka zvacSeniu rozliSenia

rozostupy medzi hranami vécsie.

Pre néazornost si moézeme ukazat netuspech odstranovania rozmazania, ktoré malo
slazit na predspracovanie zadberov pre neurénové siete pred zvacSsenim rozliSenia. S
nim obvykle automaticky kombinujeme ekvalizaciu histogramu, kedZe pri procese, ak
nemé vniest do obrazu velkorozmerné artefakty, dochadza ku komprimécii intenzit jasu
do spektra nizkych hodnét. Napriek tomu, Ze tato metdéda mala prinosny ucinok na
testovacich rozmazanych zaberoch nepochadzajicich z nasich videi, zjavne je funkéna

len v tzkom spektre pripadov. Nase rekolorizované video pri aplikacii po jednotlivych
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Obr. 3.11: Na rekolorizaciu nadvézujice - Vlavo hore: zaostrenie hranovym filtrom +

LapSRN, vpravo hore: zaostenie od¢itanim rozmazaného obrazu + LapSRN, vIavo dole:
LapSRN -+ zaostrenie hranovym filtrom, vpravo dole: LapSRN -+ zaostrenie od¢itanim

rozmazaného obrazu
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Obr. 3.12: Rekolorizacia + odstranenie rozmazania v zdberoch + ekvalizacia histogramu

kanaloch skoro zbavila farby, no hlave ho tplne dezintegruje, ako vidiet na zabere
3.12. Rozmazanie vyskytujtice sa vo videdch z bezpec¢nostnych kamier, ktoré byvaju
uchytené stabilne a vzdialene od pozorovanych objektov, v8ak nebyva signifikantnym
problémom, a teda sa nim nebudeme dalej zaoberat, a ani sme tu neskusali efekt tohto

predspracovania na nasledné zvySovanie rozliSenia neurénovymi sietami.

V priestore bez akéhokolvek iného nez ambientného no¢ného osvetlenia, mimo
zony pouli¢nych lamp - prakticka aplikiaciu si mézeme predstavit napriklad u zadného
vchodu do nejakej prevadzky - sme zistili, Ze infracervené prisvecovanie kamery Hik-
vision zial nie je ani z realtivne blizkej vzdialenosti postacujtce, ak by sme chceli
identifikovat tvar osoby. Najprv sme sa pokusili aplikovat rekolorizaciu na pévodné, aj
Sumu zbavené video, ktora trvala v priemere skoro 3 sekundy na zéber o velkosti 640
x 360 pixelov, konkrétne pri videu bez predspracovania 12,5 us/px a s predspracova-
nim odstranenim Sumu 11,05 us/px. Kedze video v8ak neposkytuje prakticky ziadne
objekty, ktorym by bola pomerne jednoznac¢ne priraditelnéa farba, ako boli na videu
Hikvision dark distant stromy ¢i pouli¢né osvetlenie, neurénova siet je tu bezradna a

oba pokusy o kolorizéciu sa vyznacuju striedanim farebnych odtienov videa porovnatel-
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Camera 01

Obr. 3.13: Farebne nespravny efekt rekolorizécie videa bez referen¢nych objektov. Zau-
jimavym by mohlo byt, ze vzdy prave vtedy, ked autor prace na zazname podliezol,
alebo inak interagoval s rdimovou konstrukciou susiaka - tu vidiet - zdznam nahle presiel

do inak nepritomného modrého sfarbenia.

nym s umiestnenim disko gule ned’aleko sledovaného priestoru, a nespravnym odhadom

farby oblecenia, vid ukazka 3.13.

f)alej sa teda radsej pokusime zlepsit Sedotonové video. Pri tom sa ndm neosvedcili
ekvalizacie histogramu, osved¢ilo sa v8ak zaostrovanie hranovym filtrom, a to bud
ako jedina aplikovana metoda, ak nam nevadi Sum v prostredi, majic tiez znacna
vyhodu, Ze ju vieme nasadit na zivy prenos v realnom case, alebo po odstraneni Sumu
nelokalnym priemerovanim, ak preferujeme uhladenejsi obraz (no stale nechceme prist
o informaciu). Porovnanie s origindlom a zaostrovanim od¢itanim rozmazaného obrazu

je na obrazku 3.14.

Prvoradé, ak by sme chceli osobu identifikovat, je ju vobec na zabere zahliadnut.
Ak je napriklad na druhom konci prenosu obrazu z kamery straznik ¢i vratnik, mohlo
by mu byt ndpomcné byt upozorneny na pohyb ¢loveka v sledovanom priestore, keby
sa tento vyskytol v tmavej ¢asti scény a pripadne by tuto skuto¢nost vyuzil volbou
tmavého Satstva ¢i dokonca prekrytia tvare. Akékolvek snaha farebne splynat s tem-
nym pozadim by mu bola zbyto¢na, ak ho dokdzeme vidiet v infracervenom spektre,
vdaka teplu, ktoré vyzaruje. Aby ale straznik nemusel sledovat dve kamery pre jednu
scénu zaroven, chceli by sme informéciu o pohybujtcej sa siluete teplejsieho objektu
premietnut na hlavny RGB zéznam. Metodu na toto sliziacu sme implementovali, s

tym, ze straznik na zaciatku vyznaci dva body reprezentujice rovnaké miesto na RGB
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Obr. 3.14: VTavo hore: povodny zéber, vpravo hore: zaostenie od¢itanim rozmazaného
obrazu, vlavo dole: zaostrenie hranovym filtrom, vpravo dole: odstranenie Sumu nelo-

kélnym primerovanim + zaostrenie hranovym filtrom

aj infracervenom zabere, a program néasledne parovanie medzi tymito bodmi vyuzije,
aby vypocital transformaciu medzi scénami oboch spektier, a zvyraziuje siluetu pohy-
bujicich sa objektov v RGB spektre na zaklade informacii z infracerveného spektra.
Ukézku napéarovaného vyseku je mozné vidiet na obrézku 3.15, pri testovani eSte za
dna, kvoli nazornosti. Ukazku nasledného zvyraznenia pohybujicej sa osoby mozno

vidiet na obrazku 3.16.

3.3 Identifikacia vozidla

Identifikovat vozidlo sa mézeme snazit jednoznacne - pomocou evidencéného ¢isla, alebo
typovo - model, ro¢nik, farba, atd - ¢o je podstatne jednoduchsie. Pre ti¢ely porovnania
algoritmov sme z videa american crossroad _traffic spravili vyrez Specificky zamerany
na auta odchadzajuce od kamery v ich najblizsej pozicii k nej, kde méame najlepsiu
Sancu identifikovat aj Statnu poznavaciu znacku. Rozhodli sme sa tu opét porovnat
predtrénované neurénové siete v zaujme zistenia, ¢i sa lisia ich schopnosti v pripade re-
konstrukcie textu v nizkom rozliSeni. Toto porovnanie bez akéhokol vek predspracovania,
mozeme vidiet na ukazke 3.17. Podla pohladu na emblém znacky, ozna¢enie modelu
v pravej hornej casti kufra, a disk kolesa, vidime, ze model EDSR je o Cosi schop-
nejsi, nez ostatné. Zaroven je ale aj najpomalsi. Otézne je, ¢i nam zéalezi na rychlosti,

ak ziadnu, ani najrychlejsiu siet - ¢ize ESPCN - nedokazeme nasadit v redlnom case.
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Obr. 3.15: Ukazka napéarovania oblasti zaberu infracervenej kamery do zédberu RGB

kamery na zaklade vol'by dvoch referenénych bodov pouzivatelom

04-29-2024

Obr. 3.16: Priblizné oznacenie siluety pohybujtcej sa osoby ziskané z in-

fracerveného zaberu automaticky vygenerované nami zostrojenou metdédou

track movement thermo to rgb.
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Obr. 3.17: VIavo hore: EDSR, vpravo hore: ESPCN, vlavo dole: FSRCNN, vpravo dole:
LapSRN

Kedze vsak ¢asovy rozdiel medzi tymito dvoma algoritmami je zhruba 200-n&sobny,
stale povazujeme za zaujimavé si ich detailnejSie porovnat v tomto scenari, bohatom
na detail.

Este raz sme dali pri predspracovani Ssancu algorimtu odstranujicemu rozmazanie,
no skutocne, ako je vidiet na zabere 3.18, ide praveze o velmi kontraproduktivny proces

v nasich pripadoch.

Obr. 3.18: Hore: odstranenie rozmazania + ekvalizacia histogramu (nutna po odstraiio-
vani rozmazania, kedZe obraz velmi stmavne) + EDSR, dole: odstranenie rozmazania

+ ekvalizacia histogramu + ESPCN
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Obr. 3.19: VIavo hore: zaostrovanie hranovym filtrom + EDSR, vpravo hore: zaostro-

vanie hranovym filtrom + ESPCN, vlavo dole: zaostrovanie odé¢itanim rozmazaného

obrazu + EDSR, vpravo dole: zaostrovanie od¢itanim rozmazaného obrazu + ESPCN

EDSR a ESPCN sme si porovnali nasadené na predspracované obrazy zaostrovanim
hranovym filtrom, aj od¢itanim rozmazaného obrazu - vid zéber 3.19, ako aj s tym,
ze eSte pred aplikidciou zaostrovania sme aplikovali odstranovanie Sumu nelokalnym
priemerovanim - vid zaber 3.20. Ak obraz preostrime, EDSR sa ukazuje ako dvojsecna
zbran a vie si domysliet aj to, ¢o na zabere nie je, avSak tak, ze zdegraduje pdvodnu
informéaciu. Dalo by sa povedat, Ze oproti ESPCN mé "viac fantazie", avSak casto
zas vdaka tomu skuto¢ne uhadne detail, ktory mu Struktara pixelov obrazu v nizSom
rozliseni napovedé, presnejsie. Vysledky nechame ¢itatelov posudit samych.

Na zaver tohto scenaru by bolo vhodné si porovnat zlepsené obrazy s povodnymi.
Porovname EDSR aj ESPCN, s oboma metédami zaostrovania, no bez odstranovania
sumu, kedze ide o vypoctovo zdlhavi operaciu (bezstratovo nelokalnym priemerova-
nim), ktora nepriniesla presved¢ivé zlepsenie v dobre osvetlenom prostredi. Do porov-

nania zaradime aj bikubickud interpolaciu. Ukazky su na obrazkoch 3.21 a 3.22.

3.4 Prostredia s rozmanitou mierou osvetlenia

Ak je kamera vystavena priamemu slnku, obzvlast pri jeho vychode a zapade, dyna-
micky rozsah v scéne predstavuje velka vyzvu pre bezpecnostné kamery. Velmi silny
pripad takejto situécie mame na zabere dutch street sunset. Tu sa nam buda velmi
hodit ekvalizacie histogramov. Adaptivne ekvalizicie su efektnejSie, no zanechévaju
znacné artefakty v podobe akéhosi mozajkovania obrazu. Cim VA pripustny limit

rozdielu kontrastu zvolime (tento je nutné spravne zladit s velkostou okolia - my po-



50 KAPITOLA 3. VYSLEDKY A VYHODNOTENIE PRACE

Obr. 3.20: VIavo hore: odstranenie Sumu nelokidlnym priemerovanim -+ zaostrovanie
hranovym filtrom + EDSR, vpravo hore: odstranenie Sumu nelokdlnym priemerovanim
-+ zaostrovanie hranovym filtrom + ESPCN, vlavo dole: odstréanenie Sumu nelokélnym
priemerovanim + zaostrovanie od¢itanim rozmazaného obrazu + EDSR, vpravo dole:
odstranenie Sumu nelokalnym priemerovanim -+ zaostrovanie odé¢itanim rozmazaného
obrazu + ESPCN

I— Y

Obr. 3.21: VIavo hore: zaber v povodnom rozliSeni, vpravo hore: §tvornasobné zvicSenie
bikubickou interpoléciou, vlavo dole: zaostrovanie hranovym filtrom + EDSR, vpravo

dole: zaostrovanie odéitanim rozmazaného obrazu + EDSR
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Obr. 3.22: VTavo hore: zaber v pdévodnom rozliSeni, vpravo hore: §tvornasobné zvicsenie

bikubickou interpolaciou, vlavo dole: zaostrovanie hranovym filtrom + ESPCN, vpravo

dole: zaostrovanie odé¢itanim rozmazaného obrazu +- ESPCN

uzivame okolie velkosti 4 s limitom 20 pre hladsi efekt, a okolie velkosti 8 s limitom
40 pre radikalnejsie zvyraznenie), tym lepsi kontrast ziskame medzi inak nevidenymi
podobrazmi - vid obloha na ukazke 3.23, ktora demons$truje aj spominané artefakty, a
schopnosti vytiahnut tiene a kompenzovat presvetlenie v obraze. Opét tu plati, ze ¢im
vyraznejSie zlepSenie Citatelnosti informacii v obraze si prajeme, tym menej naturalne
bude zaber posobit. V tomto pripade si vSak myslime, Ze to urcite stoji za to (pri bez-
pecnostnych kamerach), kedZe na pévodnom videu vieme ledva rozlisit povrch a tvar
cesty od okolia, a len tazko by sme tam chceli spozorovat nejaki osobu.

Vzhl'adom na dostatocne prirodzeny vzhlad obrazu bez artefaktov, ktory zaroven
poskytuje vizualnu informaciu o diani v ulici, sme si zvolili klasickd globalnu ekvalizaciu
histogramu (aplikovant vo forméte YCrCb), a osved¢éilo sa nam ju nasadit na odsumeny
obraz (nelokdlnym priemerovanim) a kombinovat ju s niektorou z metod zaostrovania.
Zaostrovanie hranovym filtrom je pri tom agresivnejsie, kym zaostrovanie od¢itanim
rozmazaného obrazu tu produkuje len tazko rozoznatelné zlepsenie, avSak zachovava
hladky charakter obrazu, vid ukazka 3.24.

Pozrime sa teraz na trochu miernejsiu situéciu, kde stale ¢elime oblohe presvetlenej
zapadajucim slnkom, avsak nie slnku samotnému. Kamera v scéne german _marketplace eve
je sice vzdialenejsia od objektov, ktoré by sme mohli chciet identifikovat, nez déava zmy-
sel pre bezpecnostné kamery, aviak na zazname je vela prvkov, na zlepSenie detailu
ktorych sa mozeme zamerat. Zacali sme s ekvalizdciami histogramu, v zaujme vytia-
hnutia struktir na tmavych miestach na zabere. V pripade tohto zaznamu, kedy je

obraz zaSumenejsi, nez napriklad v predoslom videu dutch street sunset, hoci - ¢o je
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Obr. 3.23: VTavo hore: povodny zaber, vpravo hore: ekvalizécia histogramu, vlavo dole:
adaptivna ekvalizacia histogramu s okolim 8 pixelov a jeho limitom kontrastu 40, vpravo

dole: adaptivna ekvalizdcia histogramu s okolim 4 pixelov a jeho limitom kontrastu 20

[16/04/2024 19:16:55
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Obr. 3.24: VIavo hore: povodny zaber, vpravo hore: odstranenie Sumu nelokalnym

priemerovanim + ekvalizacia histogramu, vlavo dole: odstranenie Sumu nelokalnym
priemerovanim + ekvalizacia histogramu + zaostrenie hranovym filtrom , vpravo dole:
dstranenie Sumu nelokdlnym priemerovanim -+ ekvalizacia histogramu -+ zaostrenie

odéitanim rozmazaného obrazu
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Obr. 3.25: VTavo hore: povodny zaber, vpravo hore: ekvalizacia histogramu, vlavo dole:

adaptivna ekvalizacia histogramu s okolim 8 pixelov a jeho limitom kontrastu 40, vpravo

dole: adaptivna ekvalizacia histogramu s okolim 4 pixelov a jeho limitom kontrastu 20

dolezité uvedomenie - sa tak na prvy pohlad vobec nemusi zdat, sa velmi osvedcilo
pre potlacenie artefaktov v doésledku ekvalizacii histogramov, nasadit najprv na obraz
odstranovanie Sumu nelokdlnym priemerovanim. Pozitivny dopad tohto predspracova-
nia je vidiet porovnanim medzi ukazkou 3.25 a ukazkou a 3.26, na ktorej sice doslo pri
odstraneni sSumu k miernej degradacii detailu opakujucich sa struktur, avsak z principu
fungovania algoritmu nelokalneho priemerovania ostali unikitne detaily zachované, a
to je to, ¢o nas pri bezpecnostnych kamerach zaujima - detaily jedine¢nych postav, vo-
zidiel, pripadne inych objektov, a sme ochotni obetovat detail struktiry ¢asti budovy,
alebo, na naSom zazname, napriklad Zeriavu.

Opét sa nam osvedcilo tieto algoritmy kombinovat s niektorou z implementovanych
metod zaostrovania. Tiez sme odpozorovali, Ze je prinosnejsie aplikovat zaostrovanie
v poradi eSte pred ekvalizaciou histogramu. Kvoli pritomnosti artefaktov pri adaptiv-
nej ekvalizacii histogramu povazujeme aj tu globalnu ekvalizaciu v YCrCb formate za
vhodnejsiu. Jej najuspesnejsie kombinacie s algoritmami zaostrovania vidime na zabere
3.27. Citatelovi odporucame zamerat sa na cyklistu vpravo dole a stanky restaurécii

nalavo. Ak chceme zlepSenie aplikovat v redlnom case, nemozeme si dovolit zbavova-
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Obr. 3.26: VIavo hore: povodny zaber, vpravo hore: odstranenie Sumu nelokalnym

priemerovanim, vlavo dole: odstrénenie Sumu nelokalnym priemerovanim + ekvalizécia
histogramu, vpravo dole: odstrénenie Sumu nelokidlnym priemerovanim -+ adaptivna
)

ekvalizacia histogramu
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Obr. 3.27: VIavo hore: zaostrenie od¢itanim rozmazaného obrazu, vpravo hore: od-
stranenie Sumu nelokalnym priemerovanim + zaostrenie hranovym filtrom, vlavo dole:
zaostrenie od¢itanim rozmazaného obrazu + ekvalizacia histogramu, vpravo dole: od-
stranenie Sumu nelokdlnym priemerovanim -+ zaostrenie hranovym filtrom + ekvalizacia

histogramu

nie obrazu Sumu nelokdlnym priemerovanim. Vtedy je vhodnejsie zvolit zaostrovanie
odé¢itanim rozmazaného obrazu, nez hranovym filtrom. Pre porovnanie uvidzame aj
kombinaciu tych istych zaostrovacich a odsumovacieho algoritmu s adaptivnou ekvali-

zaclou v ukazke 3.28.

3.5 Poveternostné vplyvy

Kamery umiestnené v exteriéri buda vo vécsine lokalit obc¢as ¢elit podmienkam ako
je hmla ¢i dazd. Na video strba snow fog sme nasadili algoritmy v snahe nielen
zlepsit detail v obraze, pri ktorom sme sa najviac sustredili na konstrukciu lanoviek v
pozadi, kedZe ide o asi najjednoduchsie a zaroven najsmerodajnejsie posuditelny detail,
ale aj na potlacenie efektu hmly v scéne. Vyskisali sme mnoZstvo réznych nastaveni
adaptivnej ekvalizacie histogramu, a prave poznatky z tohto videa nés viedli k tomu, ze

vo vySsie zlepSovanych videach sme volili ako primérnu moznost okolie 4 pixelov a limit
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Obr. 3.28: VIavo hore: zaostrenie odé¢itanim rozmazaného obrazu, vpravo hore: od-
stranenie Sumu nelokalnym priemerovanim + zaostrenie hranovym filtrom, vlavo dole:
zaostrenie od¢itanim rozmazaného obrazu + adaptivna ekvalizacia histogramu, vpravo
dole: odstranenie Sumu nelokalnym priemerovanim + zaostrenie hranovym filtrom +

adaptivna ekvalizacia histogramu
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Obr. 3.29: VTavo hore: zaostrenie hranovym filtrom, vpravo hore: zosvetlenie o hod-

notu 50 (v kazdej RGB zlozke), vlavo dole: zaostrenie hranovym filtrom + zosvetlenie,

vpravo dole: zosvetlenie + zaostrenie hranovym filtrom

rozdielneho kontrastu 20, a ako sekundarnu, agresivnejsiu alternativu, okolie 8 pixelov
a limit kontrastu 40. Problémom inak zvolenych kombinacii a pomerov medzi okolim
a limitom jasu boli eSte vyraznejsie artefakty v podobe “mozajkovania” obrazu. AvSak
vsetky ekvalizacie histogramu tu zapricinili skér degradaciu obrazu. Odskisali sme
aj potencialny prinos jednoduchého zosvetlenia obrazu, avSak podla oc¢akavani, kedze
aplikaciou zosvetlenia pripoc¢itanim konstanty k intenzite kazdého pixelu nedochédza
k ziadnemu zvyrazneniu rozdielov medzi jednotlivymi intenzitami, praveze na svetlych
miestach dojde k jeho zaniku. Efekt sice na pohlad posobi "¢istejsie", neprinasa vsak
v pripade bezpec¢nostnych kamier Ziaden osoh. Ukazku tohto mozno vidiet na obrazku
3.29.

Nakoniec sme dosli k tomu, Ze najprinosnejsie je v tomto pripade pouZitie len samot-
ného zaostrovania hranovym filtrom. Na ukazke 3.30 toto kombinujeme s ekvalizdciami
histogramu pred alebo po, ale snimku vpravo hore povazujeme za lepsiu nez tie, ktoré
podstipili ekvalizacie.

Klip parking bol nato¢eny za dazda, ten vSak na kamere prakticky nebadat, a ne-
bude ho badat ani na vac¢sine bezpecnostnych kamier, pokial nepojde o skuto¢ne husty
dazd, tak ako mame problém zachytit dazd na kamere smartfonu. Vacgina bezped-
nostnych kamier méa zaroveii predizent striesku nad objektivom, ktora ho chrani pred
dopadom kvapiek. Co sa teda vobec menf vplyvom dazda na zaberoch? Nie vela, no

zaroven jedna vec je kltucovou a neprekonatelnou prekazkou - dazdniky. Drviva vac-
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Obr. 3.30: VIavo hore: povodny zaber, vpravo hore: zaostrenie hranovym filtrom, vlavo

dole: zaostrenie hranovym filtrom + ekvalizacia histogramu, vpravo dole: + zaostrenie

hranovym filtrom + adaptivna ekvalizacia histogramu

Sina exteriérovych bezpecnostnych kamier je umiestnené vo vyske, pri pohlade z ktorej
kupola dazdnika kompletne prekryva tvar ¢loveka v akejkolvek vzdialenosti, v kto-
rej by eSte bola rozoznatelna. Toto je prekazka, s ktorou sa nedokaZeme vysporiadat.
Druhé vec, ¢o sa meni oproti tomu, ked je obloha len zatiahnuta oblakmi, je voda na
zemi. Niektoré povrchy mozu vytvarat znacné zrkadlenie, ked st pokryté hoci aj velmi
plytkou vrstvou vody. V nasej doméne to nema priamociaru podstatnost - prakticky
vSetky objekty, ktorych pritomnost v sledovanom priestore nas zaujima, sa pohybuji
nad povrchom - av8ak ked ¢ierny asfalt prestane byt na zazname iernym, objekty
na nom nemusia oproti nemu tak vyniknit, ¢o by mohlo mierne komplikovat pracu
niektorym algoritmom a degradovat kvalitu ich vysledku, napriklad aj algoritmom sli-
ziacim na automaticki identifikaciu ¢i klasifikiciu objektov, pre ktoré sa v tejto praci
tiez snazime maximalizovat objem a ¢istotu vystupnej informacie. Dosli sme k zaveru,
ze na video dostato¢ne vysokého rozlisenia za solidnych svetelnych podmienok neméa
vyznam aplikovat ostrenie hranovym filtrom, kedZe dojde k zbyto¢nému preostreniu,
a ostrenie od¢itanim rozmazaného obrazu v zmysluplnej miere zas neprodukuje bada-
telny rozdiel. Ekvalizacie histogramu st zas zbytoc¢né, ak ide o takyto dobre no hlavne
uniformne osvetleny priestor, a praveze pdsobia kontraproduktivne, a to jednak zdoraz-
nenim lesku vlhkych ploch, a taktiez zhorSenim citatelnosti farby svetlych a tmavych
automobilov, ktord moéze byt v niektorych pripadoch predmetom zaujmu. Na ukézke

3.31 vidime, Ze vel mi malé zlepSenie oproti originalnemu obrazu mozeme so zaostrenim
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Obr. 3.31: VIavo hore: péovodny zaber, vpravo hore: zaostrenie odéitanim rozmaza-

ného obrazu, vlavo dole: zaostrenie od¢itanim rozmazaného obrazu + ekvalizacia his-
togramu, vpravo dole: + zaostrenie od¢itanim rozmazaného obrazu + adaptivna ekva-

lizacia histogramu

od¢itanim rozmazaného obrazu dosiahnut, no origindlny zédznam je dostato¢ne kvalitny
a nevieme ho vhodnejsie predspracovat, alebo zlepsit priamo z hladiska Iudského pozo-
rovatela. Za pov8imnutie stoji kra¢ajuca osoba vlavo hore s bledymi nohavicami, ktora

na ekvalizovanych zéberoch splyva s lesknticim sa vlhkym asfaltom.

3.6 Prehlad implementovanych metod

Nakoniec pontikame prehl'ad vSetkych testovanych metod, ich ¢asovej narocnosti, zavis-
losti od parametrov nastavenych pred alebo pri volani samotnej metody, a zhodnotenia
ich vhodnosti, v tabulke 3.2 a 3.3.
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kategoria

algoritmus

oCakavatelné

18/ px

zévislost od

parametrov

uplatnenie

zvySovanie

rozliSenia

bikubicka

interpolacia

<0,1

nie

najrychlejsi sposob
zvysenia rozliSenia,
nezaostava za neur.
sietami do neakcep-

tovatelnej miery

EDSR

235

nie

najkonstruktivnejsia

a najschopnejsia

ESPCN

0,8

nie

najrychlejsia
neurénova siet,
najvhodnejsia, kedze
vo velkej vacsine
pripadov nezaostava
ani za EDSR

FSRCNN

1,8

nie

zmysluplne rychla
alternativa ESPCN

LapSRN

8,2

nie

¢asovo
najkonzistentnejsia,
vnasa najmenej

artefaktov

zaostrenie

hranovym

filtrom

<0,1

ano

najefeknejsie pre
zvyraznenie hran,
vhodné nasadit po
odstraneni Sumu
nelok. priemerovanim,
v kombinécii s neur.
sietami az po ich

nasadenf

od¢itanim
rozmazaného

obrazu

<0,1

ano

hladsi sposob
zaostrenia, efekt nie
je vyznacny, no
netvori artefakty, ne-
potrebuje kombinovat

s odstranovanim Sumu

Tabul'ka 3.2: Tabulka implementovanych metod - 1. ¢ast
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. : ocakavatelné | zavislost od :
kategoria algoritmus uplatnenie
s/ px parametrov
vhodnéa na kompen-
zaciu vysokého dyn.
) rozsahu scény,
globalna 5 )
C ) nadbyto¢na v dobrych
ekvalizacia | v YCrCh <0,1 nie .
. svetel. podmienkach,
histogramu | formate . .
neziaduca, ak je osoba
presvetlena voci
tmavému pozadiu
vnésa znacné artefakty
adaptivna . .
. - efekt mozajkovania,
v YCrCb <0,1 ano '
efektivna pre vyzdvih-
formate ] _
nutie tmavych miest
zvysuje pocitovi
o Citatelnost zaberu ako
) pripocitanim )
zvysenie ] . takého, no je kontra-
) konstantne;j <0,1 a4no
jasu produktivne v zmysle
hodnoty ) L
zvyraznenia vizualnej
informacie
efektné, vhodné
kombinovat so zaost-
odstranenie | nelokalnym ) renim hran. filtrom,
] 34 ano ]
Sumu priemerovanim zachovava detaily
do uspokojivej miery,
vypoctovo narocné
dekonvoltciou
) vo frekvenénom v nasej doméne
odstranenie . i
) spektre + nutna | 0,22 ano nasadenia zbytocné
rozmazania o )
ekvalizacia a kontraproduktivne
histogramu
) spolahliva, ak zaber
neurdénovou )
L ) ) obsahuje referen¢né
rekolorizacia | siefou 12 ano biektv. inak
objekty, inak nevyspy-
Deoldify JeE yopy
tatelna
napomocné v tmavych
detekcia pomocou . priestoroch, kvalita
<0,01 nie ) )
pohybu IR spektra zavisi od kvality IR
obrazu z kamery

Tabul'ka 3.3: Tabulka implementovanych metod - 2. ¢ast
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Zaver

V tejto praci sme presktimali, implementovali a porovnali moznosti zlepSenia kvality a
¢itatelnosti vizualnej informécie vo videach z bezpecnostnych kamier. Vyskum v tejto

praci by mal byt priamo napomocny k integracii softvérov, ktoré:

e Zvysia celkova mieru ¢itatelnosti priestoru sledovaného Iudskym operatorom pro-
strednictvom systému bezpecnostnych kamier v realnom ¢ase, umoznujic tak
efektivnejsie alebo vcasnejsie predchadzat skodnej ¢i kriminalnej ¢innosti, ¢i rie-

Sit iné problémy objaviace sa v medziach monitorovanej zony.

e Zvyraznia doménovo relevantna vizualnu informaciu pri retrospektivnom prehlia-
dani a vySetrovani zaznamu a na fiom (potencialne) zachyteného kontextu. Aj
ak na zéaklade snimok stéle nedokazeme priradit tvar konkrétnemu cloveku (na-
priklad v policajnej databéze), alebo jednozna¢ne ur¢it evidencéné &islo vozidla,
pretoze unikatnu informaciu nezachytent vo videu nedokazeme dotvorit bez rov-
nakej referencie, zlepSenie viditelnosti ¢it moze potvrdit ¢i vyvratit pritomnost
nejakej osoby ¢i vozidla na mieste, ¢o ma samo o sebe vysoki vypovednu hodnotu

pre vySetrovanie spachanej aktivity:.

e Zdoraznia podkladové informécie pre algoritmy rozpoznavajuce objekty v ob-
raze, a zvySuju tak pravdepodobnost spravnej klasifikicie, ¢o zvysi spolahlivost

automatizovanych procesov v dohladovych systémoch.

Program, ktory sme pre tcely prace napisali, umoznuje priamu aplikaciu vsetkych
preskimanych metéd a tpravu ich pracovnych parametrov na videadch vyhotovenych
bezpecnostnymi kamerami v redlnom ostrom nasadeni, alebo na Zivych prenosoch z
tychto kamier po pripojeni sa na IP adresu kamery prostrednictvom jej pridania do
zdrojov prilozenej triedy LiveVideo v nasom doplnkovom module live video acquirement.
V tejto pisomnej casti prace sme zaroven popisali, ktoré metody sa hodia v akych sce-
naroch nasadenia.

Obzvlast prinosnym vie byt zaostrovanie hranovym filtrom, ktoré vieme aplikovat
na priamy prenos z kamery, na ktord sme prostrednictvom nasho programu pripojeni.
Ak spracuvame uz nahrany videozaznam, stoji za to video pred zaostrovanim zbavit

sumu bez straty unikidtneho detailu metédou nelokalneho priemerovania. Medzi tymto
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zbavenim Sumu a zaostrovanim ma tiez zmysel nasadit jednu z implementovanych ne-
urénovych sieti, ak ma vyznam pre nas zviacsenie rozliSenia obrazu aspon stvornasobne,
kedy za¢inaju mat neurénové siete kvalitativny naskok pred bikubickou interpoléciou.
Vysledok pri pouziti najrychlejsieho modelu ESPCN bude takmer na nerozoznanie od
vysledkov modelov FSRCNN a LapSRN. Ak nie sme limitovani ¢asom, ktory moze pri
nasadeni tohto modelu uz na niekol’kosekundové video vo vysokom rozliSeni dosahovat
hodiny, o trochu lepsi vysledok vieme niekedy dosiahnut pouzitim modelu EDSR. Ak sa
vratime k zaostrovaniu, a chceme ho robit v redlnom ¢ase, nazivo, a neprajeme si preos-
trenie vnasajice do obrazu artefakty, zaostrovanie odé¢itanim rozmazaného obrazu vie
priniest pozitivne vysledky bez nutnosti predspracovania. Ekvalizacie histogramov ndm
pomozu zviditelnit dianie v presvetlenych a tmavych regionoch pri zaberoch s vyso-
kym dynamickym rozsahom, pricom silu efektu adaptivnej ekvalizécie vieme regulovat
nastavenim jej parametrov. Cim agresivnejsie sa pokusime vytiahnut malé rozdiely
v zachytenych intenzitach, tym viac artefaktov do obrazu vnesieme, znac¢ne znizuju-
cich prehladnost, a komplikujucich pracu pre pripadné nasadenie neurénovych sieti
alebo rozpoznévacich algoritmov na vysledok adaptivnej ekvalizacie. Preto su ekvaliza-
cie histogramu situacné. Rovnako situa¢na je aj implementované rekolorizacia, ktoré je
spolahliva len ak st na Sedoténovom zabere (napriklad z kamery kombinujucej obraz
zo spektier viditelného svetla a infracerveného Zziarenia) obsiahnuté objekty ktorym
obvykle prinalezia nejaké typické farebné oditene - napriklad zelen, potencidlne obloha
kontrastujica s oblakmi. Tam kde je rekolorizacia zmysluplne pouZitelna, umoziuje fa-
rebne separovat objekty v obraze od pozadia a zlepsit tak ich identifikovatel nost oproti
Sedotonovému obrazu. Aplikovat ju vSak dokdzeme len na uz nahrané video, kvoli ca-
sovej narocnosti. TaktieZ nas program s jednoduchou uvodnou asistenciou od Tudského
pozorovatela umoznuje pre kamery s paralelnym zaznamom v infracervenom spektre
pomocou neho vyznacovat priblizné siluety pohybujicich sa os6b v RGB zézname v
Tubovolne nepriaznivych svetelnych podmienkach. Vstupom do tejto metody modze byt
aj zivy prenos v tychto dvoch spektrach.

Dalsi vyvoj v tejto oblasti slubuje prichod dalsich podstatnych zlepSeni. Rozpraco-
vanych, alebo v stave pred zavedenim do produkcie, je momentéalne viacero algoritmov,
vnasajicich nové moznosti do nasej oblasti. St to napriklad neurénové siete Specializo-
vané na zvySovanie rozliSenia videa vyuzivajic kontext medzi jednotlivymi snimkami,
softvérové rieSenia kombinujice denné a nocné zabery tej istej scény pre spolahlivejsiu
rekolorizaciu za nizkej viditelnosti, a mnozstvo navrhovanych zlepSeni uz existujucich,
aj tu pouzitych algoritmov, ako napriklad modifikacie ekvalizacie histogramu, ktoré
takpovediac len ¢akaju, kym ich autori zverejnia v nasaditelnej forme. V najblizsich
rokoch budi pravdepodobne ¢oraz vacsiu rolu aj v doméne bezpecnostnych kamier hrat
predtrénované hlboké neurénové siete, i ked kompromis medzi kvalitou a rychlostou

umoznujucou nasadenie na prenos obrazov v readlnom case sa zda byt zatial velkou
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vyzvou. Tak ¢i tak sa budicnost identifikdcie objektov v priestoroch pod dohladom
bezpec¢nostnych kamier javi vdaka velkému zaujmu vyskumnikov o oblast spracovania

obrazu néadejne.
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